Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the number of different orders in which 3 cards can be lined up, we need to use the concept of permutations. A permutation is an arrangement of all the members of a set into some sequence or order.
Here's how we approach this problem:
1. Identify the number of items to arrange: In this case, we have 3 cards.
2. Understanding permutations: The number of permutations of [tex]\( n \)[/tex] distinct items is given by [tex]\( n! \)[/tex] (n factorial), which means the product of all positive integers up to [tex]\( n \)[/tex].
3. Factorial Calculation: Factorial of a number [tex]\( n \)[/tex] (written as [tex]\( n! \)[/tex]) is defined as:
[tex]\[ n! = n \times (n-1) \times (n-2) \times \ldots \times 1 \][/tex]
Specifically, for 3 cards ([tex]\(n = 3\)[/tex]):
[tex]\[ 3! = 3 \times 2 \times 1 = 6 \][/tex]
4. Result: Therefore, the number of different ways to line up 3 cards is [tex]\( 6 \)[/tex].
So, the correct answer is:
- [tex]\( 6 \)[/tex]
Hence, there are 6 different orders in which you can line up 3 cards on a table.
Here's how we approach this problem:
1. Identify the number of items to arrange: In this case, we have 3 cards.
2. Understanding permutations: The number of permutations of [tex]\( n \)[/tex] distinct items is given by [tex]\( n! \)[/tex] (n factorial), which means the product of all positive integers up to [tex]\( n \)[/tex].
3. Factorial Calculation: Factorial of a number [tex]\( n \)[/tex] (written as [tex]\( n! \)[/tex]) is defined as:
[tex]\[ n! = n \times (n-1) \times (n-2) \times \ldots \times 1 \][/tex]
Specifically, for 3 cards ([tex]\(n = 3\)[/tex]):
[tex]\[ 3! = 3 \times 2 \times 1 = 6 \][/tex]
4. Result: Therefore, the number of different ways to line up 3 cards is [tex]\( 6 \)[/tex].
So, the correct answer is:
- [tex]\( 6 \)[/tex]
Hence, there are 6 different orders in which you can line up 3 cards on a table.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.