Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's address the transformation of the given function [tex]\( y = x^2 \)[/tex]:
1. Reflected across the x-axis:
To reflect [tex]\( y = x^2 \)[/tex] across the x-axis, we multiply the function by [tex]\(-1\)[/tex]. Therefore, the reflection of [tex]\( y = x^2 \)[/tex] across the x-axis is:
[tex]\[ y = -x^2 \][/tex]
2. Shifted right 3 units:
To shift any function [tex]\( y = f(x) \)[/tex] to the right by 3 units, we replace [tex]\( x \)[/tex] with [tex]\( x - 3 \)[/tex] in the function. Let’s apply this to our reflected function [tex]\( y = -x^2 \)[/tex]:
[tex]\[ y = -(x - 3)^2 \][/tex]
3. Shifted up 6 units:
To shift any function [tex]\( y = f(x) \)[/tex] up by 6 units, we add 6 to the function. Applying this to the function [tex]\( y = -(x - 3)^2 \)[/tex]:
[tex]\[ y = -(x - 3)^2 + 6 \][/tex]
Therefore, the equation for the function that has the graph with the shape of [tex]\( y = x^2 \)[/tex], but reflected across the x-axis, shifted right by 3 units, and shifted up by 6 units is:
[tex]\[ y = -(x - 3)^2 + 6 \][/tex]
1. Reflected across the x-axis:
To reflect [tex]\( y = x^2 \)[/tex] across the x-axis, we multiply the function by [tex]\(-1\)[/tex]. Therefore, the reflection of [tex]\( y = x^2 \)[/tex] across the x-axis is:
[tex]\[ y = -x^2 \][/tex]
2. Shifted right 3 units:
To shift any function [tex]\( y = f(x) \)[/tex] to the right by 3 units, we replace [tex]\( x \)[/tex] with [tex]\( x - 3 \)[/tex] in the function. Let’s apply this to our reflected function [tex]\( y = -x^2 \)[/tex]:
[tex]\[ y = -(x - 3)^2 \][/tex]
3. Shifted up 6 units:
To shift any function [tex]\( y = f(x) \)[/tex] up by 6 units, we add 6 to the function. Applying this to the function [tex]\( y = -(x - 3)^2 \)[/tex]:
[tex]\[ y = -(x - 3)^2 + 6 \][/tex]
Therefore, the equation for the function that has the graph with the shape of [tex]\( y = x^2 \)[/tex], but reflected across the x-axis, shifted right by 3 units, and shifted up by 6 units is:
[tex]\[ y = -(x - 3)^2 + 6 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.