Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Complete the table shown to the right for the population growth model for a certain country.

\begin{tabular}{|c|c|c|}
\hline 2004 Population (millions) & Projected 2022 Population (millions) & \begin{tabular}{c}
Projected Growth [tex]$R$[/tex] \\
[tex]$k$[/tex]
\end{tabular} \\
\hline 53.8 & 46.3 & \\
\hline
\end{tabular}

[tex]$k = \square$[/tex]

(Round to four decimal places as needed.)


Sagot :

To complete the table for the population growth model, we follow the steps to find the value of the growth rate [tex]\( k \)[/tex]:

1. Given Data:
- Initial population in 2004, [tex]\( P_0 \)[/tex]: 53.8 million
- Projected population in 2022, [tex]\( P(t) \)[/tex]: 46.3 million
- Time period, [tex]\( t \)[/tex]: 2022 - 2004 = 18 years

2. Population Growth Model:

The population growth model can be represented by the equation:
[tex]\[ P(t) = P_0 \cdot e^{kt} \][/tex]
where:
- [tex]\( P(t) \)[/tex] is the population at year [tex]\( t \)[/tex]
- [tex]\( P_0 \)[/tex] is the initial population
- [tex]\( k \)[/tex] is the growth rate
- [tex]\( t \)[/tex] is the time in years

3. Rearranging the Formula:

To find [tex]\( k \)[/tex], we need to rearrange the formula:
[tex]\[ \frac{P(t)}{P_0} = e^{kt} \][/tex]
Taking the natural logarithm of both sides:
[tex]\[ \ln\left(\frac{P(t)}{P_0}\right) = kt \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{\ln\left(\frac{P(t)}{P_0}\right)}{t} \][/tex]

4. Substituting the Given Values:

[tex]\[ k = \frac{\ln\left(\frac{46.3}{53.8}\right)}{18} \][/tex]

5. Calculation:
[tex]\[ \ln\left(\frac{46.3}{53.8}\right) \approx \ln(0.860415) \approx -0.150130 \][/tex]
[tex]\[ k = \frac{-0.150130}{18} \approx -0.008340639 \][/tex]

6. Rounding:

Rounding the value of [tex]\( k \)[/tex] to four decimal places, we get:
[tex]\[ k \approx -0.0083 \][/tex]

Therefore, the completed table looks like this:
[tex]\[ \begin{tabular}{|c|c|c|} \hline 2004 Population (millions) & Projected 2022 Population (millions) & \begin{tabular}{c} Projected Growth $R$ \\ $k$ \end{tabular} \\ \hline 53.8 & 46.3 & -0.0083 \\ \hline \end{tabular} \][/tex]

Hence, the growth rate [tex]\( k \)[/tex] rounded to four decimal places is [tex]\(-0.0083\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.