Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the force [tex]\( F \)[/tex] between two charges, [tex]\( Q_1 \)[/tex] and [tex]\( Q_2 \)[/tex], separated by a distance [tex]\( r \)[/tex], we use Coulomb's law. The formula for Coulomb's law is:
[tex]\[ F = k \frac{Q_1 Q_2}{r^2} \][/tex]
Where:
- [tex]\( k \)[/tex] is Coulomb's constant, [tex]\( 9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \)[/tex]
- [tex]\( Q_1 \)[/tex] is the first charge, [tex]\( 3.0 \times 10^{-5} \, \text{C} \)[/tex]
- [tex]\( Q_2 \)[/tex] is the second charge, [tex]\( 4.0 \times 10^{-5} \, \text{C} \)[/tex]
- [tex]\( r \)[/tex] is the distance between the charges, [tex]\( 3.0 \, \text{m} \)[/tex]
Let's substitute these values into the formula:
[tex]\[ F = \left(9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \right) \frac{(3.0 \times 10^{-5} \, \text{C})(4.0 \times 10^{-5} \, \text{C})}{(3.0 \, \text{m})^2} \][/tex]
First, let's calculate the product of the charges:
[tex]\[ Q_1 \times Q_2 = (3.0 \times 10^{-5} \, \text{C})(4.0 \times 10^{-5} \, \text{C}) = 12.0 \times 10^{-10} \, \text{C}^2 \][/tex]
Next, calculate the square of the distance:
[tex]\[ r^2 = (3.0 \, \text{m})^2 = 9.0 \, \text{m}^2 \][/tex]
Now, substitute these results back into the formula:
[tex]\[ F = \left(9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \right) \frac{12.0 \times 10^{-10} \, \text{C}^2}{9.0 \, \text{m}^2} \][/tex]
Perform the division inside the fraction:
[tex]\[ \frac{12.0 \times 10^{-10} \, \text{C}^2}{9.0 \, \text{m}^2} = 1.333... \times 10^{-10} \, \text{C}^2/\text{m}^2 \approx 1.34 \times 10^{-10} \, \text{C}^2/\text{m}^2 \][/tex]
Then multiply by Coulomb's constant [tex]\( k \)[/tex]:
[tex]\[ F = (9.00 \times 10^9) \times 1.34 \times 10^{-10} = 1.206 \times 10^0 \, \text{N} \approx 1.2 \, \text{N} \][/tex]
So, the force [tex]\( F \)[/tex] between the two charges, with the provided values, is approximately [tex]\( 1.2 \, \text{N} \)[/tex]. From the given options, this matches closest to:
[tex]\[ \boxed{1.0 \, \text{N}} \][/tex]
[tex]\[ F = k \frac{Q_1 Q_2}{r^2} \][/tex]
Where:
- [tex]\( k \)[/tex] is Coulomb's constant, [tex]\( 9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \)[/tex]
- [tex]\( Q_1 \)[/tex] is the first charge, [tex]\( 3.0 \times 10^{-5} \, \text{C} \)[/tex]
- [tex]\( Q_2 \)[/tex] is the second charge, [tex]\( 4.0 \times 10^{-5} \, \text{C} \)[/tex]
- [tex]\( r \)[/tex] is the distance between the charges, [tex]\( 3.0 \, \text{m} \)[/tex]
Let's substitute these values into the formula:
[tex]\[ F = \left(9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \right) \frac{(3.0 \times 10^{-5} \, \text{C})(4.0 \times 10^{-5} \, \text{C})}{(3.0 \, \text{m})^2} \][/tex]
First, let's calculate the product of the charges:
[tex]\[ Q_1 \times Q_2 = (3.0 \times 10^{-5} \, \text{C})(4.0 \times 10^{-5} \, \text{C}) = 12.0 \times 10^{-10} \, \text{C}^2 \][/tex]
Next, calculate the square of the distance:
[tex]\[ r^2 = (3.0 \, \text{m})^2 = 9.0 \, \text{m}^2 \][/tex]
Now, substitute these results back into the formula:
[tex]\[ F = \left(9.00 \times 10^9 \, \text{N} \cdot \frac{\text{m}^2}{\text{C}^2} \right) \frac{12.0 \times 10^{-10} \, \text{C}^2}{9.0 \, \text{m}^2} \][/tex]
Perform the division inside the fraction:
[tex]\[ \frac{12.0 \times 10^{-10} \, \text{C}^2}{9.0 \, \text{m}^2} = 1.333... \times 10^{-10} \, \text{C}^2/\text{m}^2 \approx 1.34 \times 10^{-10} \, \text{C}^2/\text{m}^2 \][/tex]
Then multiply by Coulomb's constant [tex]\( k \)[/tex]:
[tex]\[ F = (9.00 \times 10^9) \times 1.34 \times 10^{-10} = 1.206 \times 10^0 \, \text{N} \approx 1.2 \, \text{N} \][/tex]
So, the force [tex]\( F \)[/tex] between the two charges, with the provided values, is approximately [tex]\( 1.2 \, \text{N} \)[/tex]. From the given options, this matches closest to:
[tex]\[ \boxed{1.0 \, \text{N}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.