Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! To determine the future value of a deposit when the interest is compounded continuously, we use the formula for continuous compounding:
[tex]\[ A = P \times e^{rt} \][/tex]
where:
- [tex]\( A \)[/tex] is the future value of the investment/loan, including interest.
- [tex]\( P \)[/tex] is the principal investment amount (the initial deposit).
- [tex]\( r \)[/tex] is the annual interest rate (decimal).
- [tex]\( t \)[/tex] is the time the money is invested for, in years.
- [tex]\( e \)[/tex] is the base of the natural logarithm, approximately equal to 2.71828.
In this scenario:
- The initial deposit ([tex]\( P \)[/tex]) is \[tex]$1,000. - The annual interest rate (\( r \)) is 1.6%, which is 0.016 as a decimal. - The number of years (\( t \)) the money is invested is 18 years. Plugging these values into the formula, we get: \[ A = 1000 \times e^{(0.016 \times 18)} \] First, we compute the exponent: \[ 0.016 \times 18 = 0.288 \] Next, we calculate \( e^{0.288} \): \[ e^{0.288} \approx 1.33376 \] Then, we multiply this result by the principal amount, \( P \): \[ A = 1000 \times 1.33376 = 1333.76 \] Therefore, the future value of the deposit after 18 years, rounded to the nearest cent, is \$[/tex]1333.76.
[tex]\[ A = P \times e^{rt} \][/tex]
where:
- [tex]\( A \)[/tex] is the future value of the investment/loan, including interest.
- [tex]\( P \)[/tex] is the principal investment amount (the initial deposit).
- [tex]\( r \)[/tex] is the annual interest rate (decimal).
- [tex]\( t \)[/tex] is the time the money is invested for, in years.
- [tex]\( e \)[/tex] is the base of the natural logarithm, approximately equal to 2.71828.
In this scenario:
- The initial deposit ([tex]\( P \)[/tex]) is \[tex]$1,000. - The annual interest rate (\( r \)) is 1.6%, which is 0.016 as a decimal. - The number of years (\( t \)) the money is invested is 18 years. Plugging these values into the formula, we get: \[ A = 1000 \times e^{(0.016 \times 18)} \] First, we compute the exponent: \[ 0.016 \times 18 = 0.288 \] Next, we calculate \( e^{0.288} \): \[ e^{0.288} \approx 1.33376 \] Then, we multiply this result by the principal amount, \( P \): \[ A = 1000 \times 1.33376 = 1333.76 \] Therefore, the future value of the deposit after 18 years, rounded to the nearest cent, is \$[/tex]1333.76.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.