Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's break down the problem step-by-step:
1. Initial Acceleration Phase:
- The particle starts from rest, meaning its initial velocity ([tex]\(u\)[/tex]) is 0.
- It accelerates uniformly at [tex]\(6 \, \text{m/s}^2\)[/tex] for [tex]\(8 \, \text{s}\)[/tex].
We need to find the speed at the end of this acceleration phase. We can use the equation of motion:
[tex]\[ v = u + at \][/tex]
where:
- [tex]\(v\)[/tex] is the final velocity
- [tex]\(u\)[/tex] is the initial velocity (0 in this case)
- [tex]\(a\)[/tex] is the acceleration ([tex]\(6 \, \text{m/s}^2\)[/tex])
- [tex]\(t\)[/tex] is the time ([tex]\(8 \, \text{s}\)[/tex])
Substituting the given values:
[tex]\[ v = 0 + (6 \, \text{m/s}^2 \times 8 \, \text{s}) = 48 \, \text{m/s} \][/tex]
Therefore, the speed at the end of the acceleration phase is [tex]\(48 \, \text{m/s}\)[/tex].
2. Deceleration Phase:
- The particle then decelerates uniformly and comes to rest in the next [tex]\(5 \, \text{s}\)[/tex].
- The initial velocity for this phase is the final velocity from the acceleration phase, which is [tex]\(48 \, \text{m/s}\)[/tex].
- The final velocity ([tex]\(v\)[/tex]) at the end of deceleration is [tex]\(0 \, \text{m/s}\)[/tex].
We need to calculate the deceleration ([tex]\(a\)[/tex]).
Using the equation of motion again:
[tex]\[ v = u + at \][/tex]
Given:
- [tex]\(v\)[/tex] is the final velocity (0 \, \text{m/s})
- [tex]\(u\)[/tex] is the initial velocity ([tex]\(48 \, \text{m/s}\)[/tex])
- [tex]\(t\)[/tex] is the time ([tex]\(5 \, \text{s}\)[/tex])
Rearranging the equation to solve for [tex]\(a\)[/tex]:
[tex]\[ 0 = 48 + a \times 5 \][/tex]
[tex]\[ a \times 5 = -48 \][/tex]
[tex]\[ a = - \frac{48}{5} = -9.6 \, \text{m/s}^2 \][/tex]
The negative sign indicates that it is a deceleration.
Thus, the speed after the acceleration phase is [tex]\(48 \, \text{m/s}\)[/tex], and since the particle comes to rest, this also means that it decelerates uniformly over the next [tex]\(5 \, \text{s}\)[/tex].
So, to answer the multiple-choice question:
- The correct answer is B. [tex]\(48 \, \text{m/s}\)[/tex].
1. Initial Acceleration Phase:
- The particle starts from rest, meaning its initial velocity ([tex]\(u\)[/tex]) is 0.
- It accelerates uniformly at [tex]\(6 \, \text{m/s}^2\)[/tex] for [tex]\(8 \, \text{s}\)[/tex].
We need to find the speed at the end of this acceleration phase. We can use the equation of motion:
[tex]\[ v = u + at \][/tex]
where:
- [tex]\(v\)[/tex] is the final velocity
- [tex]\(u\)[/tex] is the initial velocity (0 in this case)
- [tex]\(a\)[/tex] is the acceleration ([tex]\(6 \, \text{m/s}^2\)[/tex])
- [tex]\(t\)[/tex] is the time ([tex]\(8 \, \text{s}\)[/tex])
Substituting the given values:
[tex]\[ v = 0 + (6 \, \text{m/s}^2 \times 8 \, \text{s}) = 48 \, \text{m/s} \][/tex]
Therefore, the speed at the end of the acceleration phase is [tex]\(48 \, \text{m/s}\)[/tex].
2. Deceleration Phase:
- The particle then decelerates uniformly and comes to rest in the next [tex]\(5 \, \text{s}\)[/tex].
- The initial velocity for this phase is the final velocity from the acceleration phase, which is [tex]\(48 \, \text{m/s}\)[/tex].
- The final velocity ([tex]\(v\)[/tex]) at the end of deceleration is [tex]\(0 \, \text{m/s}\)[/tex].
We need to calculate the deceleration ([tex]\(a\)[/tex]).
Using the equation of motion again:
[tex]\[ v = u + at \][/tex]
Given:
- [tex]\(v\)[/tex] is the final velocity (0 \, \text{m/s})
- [tex]\(u\)[/tex] is the initial velocity ([tex]\(48 \, \text{m/s}\)[/tex])
- [tex]\(t\)[/tex] is the time ([tex]\(5 \, \text{s}\)[/tex])
Rearranging the equation to solve for [tex]\(a\)[/tex]:
[tex]\[ 0 = 48 + a \times 5 \][/tex]
[tex]\[ a \times 5 = -48 \][/tex]
[tex]\[ a = - \frac{48}{5} = -9.6 \, \text{m/s}^2 \][/tex]
The negative sign indicates that it is a deceleration.
Thus, the speed after the acceleration phase is [tex]\(48 \, \text{m/s}\)[/tex], and since the particle comes to rest, this also means that it decelerates uniformly over the next [tex]\(5 \, \text{s}\)[/tex].
So, to answer the multiple-choice question:
- The correct answer is B. [tex]\(48 \, \text{m/s}\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.