Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

At which values of [tex]x[/tex] does the function [tex]F(x)[/tex] have a vertical asymptote? Check all that apply.

[tex]\[ F(x) = \frac{1}{x(x+6)(x-1)} \][/tex]

A. 1
B. -1
C. 0
D. 6
E. -6

Sagot :

To determine where the function [tex]\( F(x) = \frac{1}{x(x+6)(x-1)} \)[/tex] has vertical asymptotes, we need to find the values of [tex]\( x \)[/tex] that make the denominator zero. The function will be undefined at these values, leading to vertical asymptotes.

We start by setting the denominator equal to zero:
[tex]\[ x(x+6)(x-1) = 0 \][/tex]

Now, solve for [tex]\( x \)[/tex] by finding the roots of each factor individually:

1. Setting [tex]\( x = 0 \)[/tex]:
[tex]\[ 0 \cdot (0+6) \cdot (0-1) = 0 \][/tex]
So, [tex]\( x = 0 \)[/tex] is a root.

2. Setting [tex]\( x+6 = 0 \)[/tex]:
[tex]\[ (x+6) = 0 \][/tex]
[tex]\[ x = -6 \][/tex]
So, [tex]\( x = -6 \)[/tex] is another root.

3. Setting [tex]\( x-1 = 0 \)[/tex]:
[tex]\[ (x-1) = 0 \][/tex]
[tex]\[ x = 1 \][/tex]
So, [tex]\( x = 1 \)[/tex] is another root.

Thus, the values of [tex]\( x \)[/tex] that make the denominator zero, and hence where vertical asymptotes occur, are [tex]\( x = 0 \)[/tex], [tex]\( x = 1 \)[/tex], and [tex]\( x = -6 \)[/tex].

The correct answers are:
A. 1
C. 0
E. -6