Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To simplify the given expression [tex]\(\frac{5 t^6}{9 t^{17}}\)[/tex] using only positive exponents, we need to follow these steps:
1. Identify the common base term [tex]\(t\)[/tex]:
The base [tex]\(t\)[/tex] appears in both the numerator and the denominator.
2. Subtract the exponents of the common base term in the numerator and the denominator:
According to the laws of exponents, when you divide terms with the same base, you subtract the exponents:
[tex]\[ t^6 \div t^{17} = t^{6 - 17} = t^{-11} \][/tex]
3. Rewrite the expression using the simplified exponent:
So, [tex]\(\frac{t^6}{t^{17}} = t^{-11}\)[/tex].
4. Substitute the simplified base term back into the fraction:
The fractional expression now becomes:
[tex]\[ \frac{5 t^{-11}}{9} \][/tex]
5. Express the term with negative exponent using positive exponents:
Recall that [tex]\(t^{-11} = \frac{1}{t^{11}}\)[/tex]. So, we can rewrite the expression as:
[tex]\[ \frac{5}{9} \times \frac{1}{t^{11}} = \frac{5}{9 t^{11}} \][/tex]
Thus, the simplified expression using only positive exponents is:
[tex]\[ \boxed{\frac{5}{9 t^{11}}} \][/tex]
1. Identify the common base term [tex]\(t\)[/tex]:
The base [tex]\(t\)[/tex] appears in both the numerator and the denominator.
2. Subtract the exponents of the common base term in the numerator and the denominator:
According to the laws of exponents, when you divide terms with the same base, you subtract the exponents:
[tex]\[ t^6 \div t^{17} = t^{6 - 17} = t^{-11} \][/tex]
3. Rewrite the expression using the simplified exponent:
So, [tex]\(\frac{t^6}{t^{17}} = t^{-11}\)[/tex].
4. Substitute the simplified base term back into the fraction:
The fractional expression now becomes:
[tex]\[ \frac{5 t^{-11}}{9} \][/tex]
5. Express the term with negative exponent using positive exponents:
Recall that [tex]\(t^{-11} = \frac{1}{t^{11}}\)[/tex]. So, we can rewrite the expression as:
[tex]\[ \frac{5}{9} \times \frac{1}{t^{11}} = \frac{5}{9 t^{11}} \][/tex]
Thus, the simplified expression using only positive exponents is:
[tex]\[ \boxed{\frac{5}{9 t^{11}}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.