Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the problem of factoring the expression [tex]\(x^2 - 81\)[/tex], let's follow a detailed, step-by-step approach.
### Step-by-Step Solution:
1. Identify the expression:
The given expression is [tex]\(x^2 - 81\)[/tex].
2. Recognize the form:
Notice that [tex]\(x^2 - 81\)[/tex] is a classic example of the difference of squares. The difference of squares formula states that:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
3. Rewrite the expression in terms of the difference of squares:
In this expression, [tex]\(a^2\)[/tex] is [tex]\(x^2\)[/tex] and [tex]\(b^2\)[/tex] is [tex]\(81\)[/tex]. We know that [tex]\(81\)[/tex] can be written as [tex]\(9^2\)[/tex]. Thus, we can rewrite the expression as:
[tex]\[ x^2 - 81 = x^2 - 9^2 \][/tex]
4. Apply the difference of squares formula:
Using the formula [tex]\(a^2 - b^2 = (a - b)(a + b)\)[/tex], where [tex]\(a = x\)[/tex] and [tex]\(b = 9\)[/tex], we can factor the expression:
[tex]\[ x^2 - 9^2 = (x - 9)(x + 9) \][/tex]
5. Identify the value of [tex]\(b\)[/tex]:
In the factored form [tex]\((x - 9)(x + 9)\)[/tex], it's clear that [tex]\(b = 9\)[/tex], since the difference of squares utilizes the value of 9 squared (which is 81).
### Conclusion:
The factored form of the expression [tex]\(x^2 - 81\)[/tex] is [tex]\((x - 9)(x + 9)\)[/tex].
Therefore, the value of [tex]\(b\)[/tex] is 9.
### Step-by-Step Solution:
1. Identify the expression:
The given expression is [tex]\(x^2 - 81\)[/tex].
2. Recognize the form:
Notice that [tex]\(x^2 - 81\)[/tex] is a classic example of the difference of squares. The difference of squares formula states that:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
3. Rewrite the expression in terms of the difference of squares:
In this expression, [tex]\(a^2\)[/tex] is [tex]\(x^2\)[/tex] and [tex]\(b^2\)[/tex] is [tex]\(81\)[/tex]. We know that [tex]\(81\)[/tex] can be written as [tex]\(9^2\)[/tex]. Thus, we can rewrite the expression as:
[tex]\[ x^2 - 81 = x^2 - 9^2 \][/tex]
4. Apply the difference of squares formula:
Using the formula [tex]\(a^2 - b^2 = (a - b)(a + b)\)[/tex], where [tex]\(a = x\)[/tex] and [tex]\(b = 9\)[/tex], we can factor the expression:
[tex]\[ x^2 - 9^2 = (x - 9)(x + 9) \][/tex]
5. Identify the value of [tex]\(b\)[/tex]:
In the factored form [tex]\((x - 9)(x + 9)\)[/tex], it's clear that [tex]\(b = 9\)[/tex], since the difference of squares utilizes the value of 9 squared (which is 81).
### Conclusion:
The factored form of the expression [tex]\(x^2 - 81\)[/tex] is [tex]\((x - 9)(x + 9)\)[/tex].
Therefore, the value of [tex]\(b\)[/tex] is 9.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.