Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the zeros of the function [tex]\(F(x) = \frac{x(x-2)}{(x+3)(x-5)}\)[/tex], we need to follow these steps:
1. Identify the zeros of the numerator:
The zeros of the numerator are the values of [tex]\(x\)[/tex] that make the numerator zero. In the function [tex]\(F(x)\)[/tex], the numerator is [tex]\(x(x-2)\)[/tex].
Set the numerator equal to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ x(x-2) = 0 \][/tex]
This equation can be solved by setting each factor to zero:
[tex]\[ x = 0 \quad \text{or} \quad x-2 = 0 \implies x = 2 \][/tex]
Therefore, the zeros of the numerator are [tex]\(x = 0\)[/tex] and [tex]\(x = 2\)[/tex].
2. Identify the zeros of the denominator:
The denominator must not be zero for the function to be defined. The denominator of [tex]\(F(x)\)[/tex] is [tex]\((x+3)(x-5)\)[/tex].
Set the denominator equal to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ (x+3)(x-5) = 0 \][/tex]
This equation can be solved by setting each factor to zero:
[tex]\[ x+3 = 0 \implies x = -3 \quad \text{or} \quad x-5 = 0 \implies x = 5 \][/tex]
Therefore, the zeros of the denominator (which we need to exclude) are [tex]\(x = -3\)[/tex] and [tex]\(x = 5\)[/tex].
3. Determine the valid zeros of the function:
Valid zeros of the function are the zeros of the numerator that are not zeros of the denominator. From step 1, the potential zeros are [tex]\(x = 0\)[/tex] and [tex]\(x = 2\)[/tex]. From step 2, we exclude [tex]\(x = -3\)[/tex] and [tex]\(x = 5\)[/tex].
Since [tex]\(0\)[/tex] and [tex]\(2\)[/tex] are not excluded by the denominator, they remain as valid zeros.
4. Conclusion:
The zeros of the function [tex]\(F(x) = \frac{x(x-2)}{(x+3)(x-5)}\)[/tex] are:
- [tex]\(x = 0\)[/tex]
- [tex]\(x = 2\)[/tex]
Therefore, the correct answers to the question are:
- A. [tex]\(2\)[/tex]
- B. [tex]\(0\)[/tex]
So the zeros of the function are [tex]\(0\)[/tex] and [tex]\(2\)[/tex].
1. Identify the zeros of the numerator:
The zeros of the numerator are the values of [tex]\(x\)[/tex] that make the numerator zero. In the function [tex]\(F(x)\)[/tex], the numerator is [tex]\(x(x-2)\)[/tex].
Set the numerator equal to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ x(x-2) = 0 \][/tex]
This equation can be solved by setting each factor to zero:
[tex]\[ x = 0 \quad \text{or} \quad x-2 = 0 \implies x = 2 \][/tex]
Therefore, the zeros of the numerator are [tex]\(x = 0\)[/tex] and [tex]\(x = 2\)[/tex].
2. Identify the zeros of the denominator:
The denominator must not be zero for the function to be defined. The denominator of [tex]\(F(x)\)[/tex] is [tex]\((x+3)(x-5)\)[/tex].
Set the denominator equal to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ (x+3)(x-5) = 0 \][/tex]
This equation can be solved by setting each factor to zero:
[tex]\[ x+3 = 0 \implies x = -3 \quad \text{or} \quad x-5 = 0 \implies x = 5 \][/tex]
Therefore, the zeros of the denominator (which we need to exclude) are [tex]\(x = -3\)[/tex] and [tex]\(x = 5\)[/tex].
3. Determine the valid zeros of the function:
Valid zeros of the function are the zeros of the numerator that are not zeros of the denominator. From step 1, the potential zeros are [tex]\(x = 0\)[/tex] and [tex]\(x = 2\)[/tex]. From step 2, we exclude [tex]\(x = -3\)[/tex] and [tex]\(x = 5\)[/tex].
Since [tex]\(0\)[/tex] and [tex]\(2\)[/tex] are not excluded by the denominator, they remain as valid zeros.
4. Conclusion:
The zeros of the function [tex]\(F(x) = \frac{x(x-2)}{(x+3)(x-5)}\)[/tex] are:
- [tex]\(x = 0\)[/tex]
- [tex]\(x = 2\)[/tex]
Therefore, the correct answers to the question are:
- A. [tex]\(2\)[/tex]
- B. [tex]\(0\)[/tex]
So the zeros of the function are [tex]\(0\)[/tex] and [tex]\(2\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.