Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the lengths of the legs of a right triangle given an acute angle of 19° and a hypotenuse of 15 units, we can follow these steps:
1. Identify the components:
- Hypotenuse ([tex]\(c\)[/tex]): 15 units
- Angle ([tex]\(\theta\)[/tex]): 19°
2. Use trigonometric functions to find the lengths of the legs:
- The leg opposite to the angle ([tex]\(a\)[/tex]) can be found using the sine function.
- The leg adjacent to the angle ([tex]\(b\)[/tex]) can be found using the cosine function.
3. Calculate the length of the leg opposite the angle using the sine function:
[tex]\[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \][/tex]
So, the length of the opposite leg is:
[tex]\[ \text{opposite} = \sin(19°) \times 15 \][/tex]
4. Calculate the length of the leg adjacent to the angle using the cosine function:
[tex]\[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]
So, the length of the adjacent leg is:
[tex]\[ \text{adjacent} = \cos(19°) \times 15 \][/tex]
5. Round the results to the nearest tenth for both values.
Following these steps, we find that:
- The length of the leg opposite the 19° angle is approximately [tex]\(4.9\)[/tex] units.
- The length of the leg adjacent to the 19° angle is approximately [tex]\(14.2\)[/tex] units.
Therefore, the correct answer is:
D. [tex]\(4.9\)[/tex] units, [tex]\(14.2\)[/tex] units
1. Identify the components:
- Hypotenuse ([tex]\(c\)[/tex]): 15 units
- Angle ([tex]\(\theta\)[/tex]): 19°
2. Use trigonometric functions to find the lengths of the legs:
- The leg opposite to the angle ([tex]\(a\)[/tex]) can be found using the sine function.
- The leg adjacent to the angle ([tex]\(b\)[/tex]) can be found using the cosine function.
3. Calculate the length of the leg opposite the angle using the sine function:
[tex]\[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \][/tex]
So, the length of the opposite leg is:
[tex]\[ \text{opposite} = \sin(19°) \times 15 \][/tex]
4. Calculate the length of the leg adjacent to the angle using the cosine function:
[tex]\[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]
So, the length of the adjacent leg is:
[tex]\[ \text{adjacent} = \cos(19°) \times 15 \][/tex]
5. Round the results to the nearest tenth for both values.
Following these steps, we find that:
- The length of the leg opposite the 19° angle is approximately [tex]\(4.9\)[/tex] units.
- The length of the leg adjacent to the 19° angle is approximately [tex]\(14.2\)[/tex] units.
Therefore, the correct answer is:
D. [tex]\(4.9\)[/tex] units, [tex]\(14.2\)[/tex] units
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.