Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine how much Potassium-40 will remain after [tex]$1.022 \times 10^{10}$[/tex] years from an initial sample of 500.3 grams, we need to follow these steps:
1. Identify the half-life and the time elapsed:
- Half-life ([tex]\( t_{1/2} \)[/tex]) of Potassium-40: [tex]\( 1.277 \times 10^9 \)[/tex] years
- Time elapsed: [tex]\( 1.022 \times 10^{10} \)[/tex] years
- Initial sample size: [tex]\( 500.3 \)[/tex] grams
2. Calculate the number of half-lives that have passed:
- Number of half-lives: [tex]\( \frac{\text{time elapsed}}{\text{half-life}} \)[/tex]
- [tex]\[ \frac{1.022 \times 10^{10} \text{ years}}{1.277 \times 10^9 \text{ years}} \approx 8.003 \][/tex]
So, approximately 8.003 half-lives have passed.
3. Use the decay formula to determine the remaining sample:
The remaining amount of a radioactive substance after a certain period is given by:
[tex]\[ \text{Remaining} = \text{Initial} \times \left(\frac{1}{2}\right)^{\text{number of half-lives}} \][/tex]
- [tex]\[ \text{Remaining} = 500.3 \times \left(\frac{1}{2}\right)^{8.003} \][/tex]
4. Calculate the remaining sample:
Using the number of half-lives calculated, we find:
- [tex]\[ 500.3 \times \left(0.5\right)^{8.003} \approx 1.950 \][/tex]
Therefore, after [tex]\( 1.022 \times 10^{10} \)[/tex] years, approximately 1.950 grams of the initial 500.3 grams of Potassium-40 will remain. Thus, the correct answer is:
- approximately 1.950
1. Identify the half-life and the time elapsed:
- Half-life ([tex]\( t_{1/2} \)[/tex]) of Potassium-40: [tex]\( 1.277 \times 10^9 \)[/tex] years
- Time elapsed: [tex]\( 1.022 \times 10^{10} \)[/tex] years
- Initial sample size: [tex]\( 500.3 \)[/tex] grams
2. Calculate the number of half-lives that have passed:
- Number of half-lives: [tex]\( \frac{\text{time elapsed}}{\text{half-life}} \)[/tex]
- [tex]\[ \frac{1.022 \times 10^{10} \text{ years}}{1.277 \times 10^9 \text{ years}} \approx 8.003 \][/tex]
So, approximately 8.003 half-lives have passed.
3. Use the decay formula to determine the remaining sample:
The remaining amount of a radioactive substance after a certain period is given by:
[tex]\[ \text{Remaining} = \text{Initial} \times \left(\frac{1}{2}\right)^{\text{number of half-lives}} \][/tex]
- [tex]\[ \text{Remaining} = 500.3 \times \left(\frac{1}{2}\right)^{8.003} \][/tex]
4. Calculate the remaining sample:
Using the number of half-lives calculated, we find:
- [tex]\[ 500.3 \times \left(0.5\right)^{8.003} \approx 1.950 \][/tex]
Therefore, after [tex]\( 1.022 \times 10^{10} \)[/tex] years, approximately 1.950 grams of the initial 500.3 grams of Potassium-40 will remain. Thus, the correct answer is:
- approximately 1.950
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.