Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine how much Potassium-40 will remain after [tex]$1.022 \times 10^{10}$[/tex] years from an initial sample of 500.3 grams, we need to follow these steps:
1. Identify the half-life and the time elapsed:
- Half-life ([tex]\( t_{1/2} \)[/tex]) of Potassium-40: [tex]\( 1.277 \times 10^9 \)[/tex] years
- Time elapsed: [tex]\( 1.022 \times 10^{10} \)[/tex] years
- Initial sample size: [tex]\( 500.3 \)[/tex] grams
2. Calculate the number of half-lives that have passed:
- Number of half-lives: [tex]\( \frac{\text{time elapsed}}{\text{half-life}} \)[/tex]
- [tex]\[ \frac{1.022 \times 10^{10} \text{ years}}{1.277 \times 10^9 \text{ years}} \approx 8.003 \][/tex]
So, approximately 8.003 half-lives have passed.
3. Use the decay formula to determine the remaining sample:
The remaining amount of a radioactive substance after a certain period is given by:
[tex]\[ \text{Remaining} = \text{Initial} \times \left(\frac{1}{2}\right)^{\text{number of half-lives}} \][/tex]
- [tex]\[ \text{Remaining} = 500.3 \times \left(\frac{1}{2}\right)^{8.003} \][/tex]
4. Calculate the remaining sample:
Using the number of half-lives calculated, we find:
- [tex]\[ 500.3 \times \left(0.5\right)^{8.003} \approx 1.950 \][/tex]
Therefore, after [tex]\( 1.022 \times 10^{10} \)[/tex] years, approximately 1.950 grams of the initial 500.3 grams of Potassium-40 will remain. Thus, the correct answer is:
- approximately 1.950
1. Identify the half-life and the time elapsed:
- Half-life ([tex]\( t_{1/2} \)[/tex]) of Potassium-40: [tex]\( 1.277 \times 10^9 \)[/tex] years
- Time elapsed: [tex]\( 1.022 \times 10^{10} \)[/tex] years
- Initial sample size: [tex]\( 500.3 \)[/tex] grams
2. Calculate the number of half-lives that have passed:
- Number of half-lives: [tex]\( \frac{\text{time elapsed}}{\text{half-life}} \)[/tex]
- [tex]\[ \frac{1.022 \times 10^{10} \text{ years}}{1.277 \times 10^9 \text{ years}} \approx 8.003 \][/tex]
So, approximately 8.003 half-lives have passed.
3. Use the decay formula to determine the remaining sample:
The remaining amount of a radioactive substance after a certain period is given by:
[tex]\[ \text{Remaining} = \text{Initial} \times \left(\frac{1}{2}\right)^{\text{number of half-lives}} \][/tex]
- [tex]\[ \text{Remaining} = 500.3 \times \left(\frac{1}{2}\right)^{8.003} \][/tex]
4. Calculate the remaining sample:
Using the number of half-lives calculated, we find:
- [tex]\[ 500.3 \times \left(0.5\right)^{8.003} \approx 1.950 \][/tex]
Therefore, after [tex]\( 1.022 \times 10^{10} \)[/tex] years, approximately 1.950 grams of the initial 500.3 grams of Potassium-40 will remain. Thus, the correct answer is:
- approximately 1.950
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.