Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure! Let's work through the question step by step:
### Given Data:
- Jordan's height: 53 inches
- Jake's height: 44 inches
- Jacob's height: 49 inches
- Standard deviation ([tex]\(\sigma\)[/tex]): 5 inches
- Mean height ([tex]\(\mu\)[/tex]): 50 inches
### Formula for z-score:
[tex]\[ z = \frac{x - \mu}{\sigma} \][/tex]
where [tex]\( x \)[/tex] is the height of the student, [tex]\( \mu \)[/tex] is the mean height, and [tex]\( \sigma \)[/tex] is the standard deviation.
### 1. Calculating Jordan's z-score:
[tex]\[ z_{\text{Jordan}} = \frac{53 - 50}{5} = \frac{3}{5} = 0.6 \][/tex]
Jordan's z-score is 0.6.
### 2. Calculating Jake's z-score:
[tex]\[ z_{\text{Jake}} = \frac{44 - 50}{5} = \frac{-6}{5} = -1.2 \][/tex]
Jake's z-score is -1.2.
### 3. Calculating Jacob's z-score:
[tex]\[ z_{\text{Jacob}} = \frac{49 - 50}{5} = \frac{-1}{5} = -0.2 \][/tex]
Jacob's z-score is -0.2.
### 4. Finding the height of a student whose z-score is 3:
We can rearrange the z-score formula to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \mu + z \cdot \sigma \][/tex]
If the z-score is 3, then:
[tex]\[ x = 50 + 3 \cdot 5 = 50 + 15 = 65 \][/tex]
So, the height of a student whose z-score is 3 is 65 inches.
### Summary of Answers:
1. Jordan's z-score: 0.6
2. Jake's z-score: -1.2
3. Jacob's z-score: -0.2
4. Height of a student whose z-score is 3: 65 inches
### Given Data:
- Jordan's height: 53 inches
- Jake's height: 44 inches
- Jacob's height: 49 inches
- Standard deviation ([tex]\(\sigma\)[/tex]): 5 inches
- Mean height ([tex]\(\mu\)[/tex]): 50 inches
### Formula for z-score:
[tex]\[ z = \frac{x - \mu}{\sigma} \][/tex]
where [tex]\( x \)[/tex] is the height of the student, [tex]\( \mu \)[/tex] is the mean height, and [tex]\( \sigma \)[/tex] is the standard deviation.
### 1. Calculating Jordan's z-score:
[tex]\[ z_{\text{Jordan}} = \frac{53 - 50}{5} = \frac{3}{5} = 0.6 \][/tex]
Jordan's z-score is 0.6.
### 2. Calculating Jake's z-score:
[tex]\[ z_{\text{Jake}} = \frac{44 - 50}{5} = \frac{-6}{5} = -1.2 \][/tex]
Jake's z-score is -1.2.
### 3. Calculating Jacob's z-score:
[tex]\[ z_{\text{Jacob}} = \frac{49 - 50}{5} = \frac{-1}{5} = -0.2 \][/tex]
Jacob's z-score is -0.2.
### 4. Finding the height of a student whose z-score is 3:
We can rearrange the z-score formula to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \mu + z \cdot \sigma \][/tex]
If the z-score is 3, then:
[tex]\[ x = 50 + 3 \cdot 5 = 50 + 15 = 65 \][/tex]
So, the height of a student whose z-score is 3 is 65 inches.
### Summary of Answers:
1. Jordan's z-score: 0.6
2. Jake's z-score: -1.2
3. Jacob's z-score: -0.2
4. Height of a student whose z-score is 3: 65 inches
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.