Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! Let's work through the question step by step:
### Given Data:
- Jordan's height: 53 inches
- Jake's height: 44 inches
- Jacob's height: 49 inches
- Standard deviation ([tex]\(\sigma\)[/tex]): 5 inches
- Mean height ([tex]\(\mu\)[/tex]): 50 inches
### Formula for z-score:
[tex]\[ z = \frac{x - \mu}{\sigma} \][/tex]
where [tex]\( x \)[/tex] is the height of the student, [tex]\( \mu \)[/tex] is the mean height, and [tex]\( \sigma \)[/tex] is the standard deviation.
### 1. Calculating Jordan's z-score:
[tex]\[ z_{\text{Jordan}} = \frac{53 - 50}{5} = \frac{3}{5} = 0.6 \][/tex]
Jordan's z-score is 0.6.
### 2. Calculating Jake's z-score:
[tex]\[ z_{\text{Jake}} = \frac{44 - 50}{5} = \frac{-6}{5} = -1.2 \][/tex]
Jake's z-score is -1.2.
### 3. Calculating Jacob's z-score:
[tex]\[ z_{\text{Jacob}} = \frac{49 - 50}{5} = \frac{-1}{5} = -0.2 \][/tex]
Jacob's z-score is -0.2.
### 4. Finding the height of a student whose z-score is 3:
We can rearrange the z-score formula to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \mu + z \cdot \sigma \][/tex]
If the z-score is 3, then:
[tex]\[ x = 50 + 3 \cdot 5 = 50 + 15 = 65 \][/tex]
So, the height of a student whose z-score is 3 is 65 inches.
### Summary of Answers:
1. Jordan's z-score: 0.6
2. Jake's z-score: -1.2
3. Jacob's z-score: -0.2
4. Height of a student whose z-score is 3: 65 inches
### Given Data:
- Jordan's height: 53 inches
- Jake's height: 44 inches
- Jacob's height: 49 inches
- Standard deviation ([tex]\(\sigma\)[/tex]): 5 inches
- Mean height ([tex]\(\mu\)[/tex]): 50 inches
### Formula for z-score:
[tex]\[ z = \frac{x - \mu}{\sigma} \][/tex]
where [tex]\( x \)[/tex] is the height of the student, [tex]\( \mu \)[/tex] is the mean height, and [tex]\( \sigma \)[/tex] is the standard deviation.
### 1. Calculating Jordan's z-score:
[tex]\[ z_{\text{Jordan}} = \frac{53 - 50}{5} = \frac{3}{5} = 0.6 \][/tex]
Jordan's z-score is 0.6.
### 2. Calculating Jake's z-score:
[tex]\[ z_{\text{Jake}} = \frac{44 - 50}{5} = \frac{-6}{5} = -1.2 \][/tex]
Jake's z-score is -1.2.
### 3. Calculating Jacob's z-score:
[tex]\[ z_{\text{Jacob}} = \frac{49 - 50}{5} = \frac{-1}{5} = -0.2 \][/tex]
Jacob's z-score is -0.2.
### 4. Finding the height of a student whose z-score is 3:
We can rearrange the z-score formula to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \mu + z \cdot \sigma \][/tex]
If the z-score is 3, then:
[tex]\[ x = 50 + 3 \cdot 5 = 50 + 15 = 65 \][/tex]
So, the height of a student whose z-score is 3 is 65 inches.
### Summary of Answers:
1. Jordan's z-score: 0.6
2. Jake's z-score: -1.2
3. Jacob's z-score: -0.2
4. Height of a student whose z-score is 3: 65 inches
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.