At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve the problem step-by-step:
1. Identify the Complex Number and its Conjugate:
The given complex number is [tex]\(-3 - 5i\)[/tex]. To find its conjugate, we change the sign of the imaginary part.
[tex]\[ \text{Conjugate of } -3 - 5i \text{ is } -3 + 5i. \][/tex]
2. Calculate the Product:
We need to multiply the complex number by its conjugate:
[tex]\[ (-3 - 5i) \times (-3 + 5i). \][/tex]
3. Use the Formula for Product of a Complex Number and its Conjugate:
The product of a complex number [tex]\(a + bi\)[/tex] and its conjugate [tex]\(a - bi\)[/tex] is given by:
[tex]\[ (a + bi)(a - bi) = a^2 + b^2. \][/tex]
In our case, [tex]\(a = -3\)[/tex] and [tex]\(b = -5\)[/tex].
4. Substitute the Values:
Substitute [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the formula:
[tex]\[ (-3)^2 + (-5)^2 = 9 + 25. \][/tex]
5. Perform the Addition:
Calculate the sum:
[tex]\[ 9 + 25 = 34. \][/tex]
6. Interpret the Result:
Since the product of a complex number and its conjugate is always a real number (no imaginary part), the result [tex]\(34\)[/tex] is purely real with an imaginary part of [tex]\(0\)[/tex]. Therefore:
[tex]\[ a = 34 \quad \text{and} \quad b = 0. \][/tex]
So, the product of [tex]\(-3-5i\)[/tex] and its conjugate is [tex]\((34.0, 0.0)\)[/tex]. Thus,
- The real number [tex]\(a\)[/tex] equals [tex]\(\boxed{34}\)[/tex],
- The real number [tex]\(b\)[/tex] equals [tex]\(\boxed{0}\)[/tex].
1. Identify the Complex Number and its Conjugate:
The given complex number is [tex]\(-3 - 5i\)[/tex]. To find its conjugate, we change the sign of the imaginary part.
[tex]\[ \text{Conjugate of } -3 - 5i \text{ is } -3 + 5i. \][/tex]
2. Calculate the Product:
We need to multiply the complex number by its conjugate:
[tex]\[ (-3 - 5i) \times (-3 + 5i). \][/tex]
3. Use the Formula for Product of a Complex Number and its Conjugate:
The product of a complex number [tex]\(a + bi\)[/tex] and its conjugate [tex]\(a - bi\)[/tex] is given by:
[tex]\[ (a + bi)(a - bi) = a^2 + b^2. \][/tex]
In our case, [tex]\(a = -3\)[/tex] and [tex]\(b = -5\)[/tex].
4. Substitute the Values:
Substitute [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the formula:
[tex]\[ (-3)^2 + (-5)^2 = 9 + 25. \][/tex]
5. Perform the Addition:
Calculate the sum:
[tex]\[ 9 + 25 = 34. \][/tex]
6. Interpret the Result:
Since the product of a complex number and its conjugate is always a real number (no imaginary part), the result [tex]\(34\)[/tex] is purely real with an imaginary part of [tex]\(0\)[/tex]. Therefore:
[tex]\[ a = 34 \quad \text{and} \quad b = 0. \][/tex]
So, the product of [tex]\(-3-5i\)[/tex] and its conjugate is [tex]\((34.0, 0.0)\)[/tex]. Thus,
- The real number [tex]\(a\)[/tex] equals [tex]\(\boxed{34}\)[/tex],
- The real number [tex]\(b\)[/tex] equals [tex]\(\boxed{0}\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.