Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure! Let's solve the problem step-by-step.
### Given Information:
1. The height [tex]\( h \)[/tex] of the cylinder is 60 cm.
2. The diameter of the cylinder is 14 cm.
3. When the cylinder is cut vertically, it is divided into two equal halves.
### Step-by-Step Solution:
1. Calculate the radius of the cylinder:
- The radius [tex]\( r \)[/tex] is half of the diameter.
[tex]\[ r = \frac{d}{2} = \frac{14 \, \text{cm}}{2} = 7 \, \text{cm} \][/tex]
2. Calculate the volume of the full cylinder:
- The volume [tex]\( V \)[/tex] of a cylinder is given by the formula:
[tex]\[ V = \pi r^2 h \][/tex]
- Here, [tex]\( r = 7 \, \text{cm} \)[/tex], [tex]\( h = 60 \, \text{cm} \)[/tex], and [tex]\( \pi \approx 3.1416 \)[/tex].
3. Insert the values into the volume formula:
[tex]\[ V = \pi \times (7 \, \text{cm})^2 \times 60 \, \text{cm} \][/tex]
- Squaring the radius:
[tex]\[ r^2 = (7 \, \text{cm})^2 = 49 \, \text{cm}^2 \][/tex]
- Multiplying by the height:
[tex]\[ r^2 \times h = 49 \, \text{cm}^2 \times 60 \, \text{cm} = 2940 \, \text{cm}^3 \][/tex]
- Multiplying by [tex]\( \pi \)[/tex]:
[tex]\[ V = \pi \times 2940 \, \text{cm}^3 \approx 3.1416 \times 2940 \, \text{cm}^3 \approx 9236.282 \, \text{cm}^3 \][/tex]
4. Divide the volume of the full cylinder by 2 to find the volume of one half:
[tex]\[ \text{Volume of one half} = \frac{9236.282 \, \text{cm}^3}{2} \approx 4618.141 \, \text{cm}^3 \][/tex]
### Final Answer:
The volume of one half of the 60 cm high cylinder with a 14 cm diameter, when cut vertically into two equal halves, is approximately 4618.141 cm³.
### Given Information:
1. The height [tex]\( h \)[/tex] of the cylinder is 60 cm.
2. The diameter of the cylinder is 14 cm.
3. When the cylinder is cut vertically, it is divided into two equal halves.
### Step-by-Step Solution:
1. Calculate the radius of the cylinder:
- The radius [tex]\( r \)[/tex] is half of the diameter.
[tex]\[ r = \frac{d}{2} = \frac{14 \, \text{cm}}{2} = 7 \, \text{cm} \][/tex]
2. Calculate the volume of the full cylinder:
- The volume [tex]\( V \)[/tex] of a cylinder is given by the formula:
[tex]\[ V = \pi r^2 h \][/tex]
- Here, [tex]\( r = 7 \, \text{cm} \)[/tex], [tex]\( h = 60 \, \text{cm} \)[/tex], and [tex]\( \pi \approx 3.1416 \)[/tex].
3. Insert the values into the volume formula:
[tex]\[ V = \pi \times (7 \, \text{cm})^2 \times 60 \, \text{cm} \][/tex]
- Squaring the radius:
[tex]\[ r^2 = (7 \, \text{cm})^2 = 49 \, \text{cm}^2 \][/tex]
- Multiplying by the height:
[tex]\[ r^2 \times h = 49 \, \text{cm}^2 \times 60 \, \text{cm} = 2940 \, \text{cm}^3 \][/tex]
- Multiplying by [tex]\( \pi \)[/tex]:
[tex]\[ V = \pi \times 2940 \, \text{cm}^3 \approx 3.1416 \times 2940 \, \text{cm}^3 \approx 9236.282 \, \text{cm}^3 \][/tex]
4. Divide the volume of the full cylinder by 2 to find the volume of one half:
[tex]\[ \text{Volume of one half} = \frac{9236.282 \, \text{cm}^3}{2} \approx 4618.141 \, \text{cm}^3 \][/tex]
### Final Answer:
The volume of one half of the 60 cm high cylinder with a 14 cm diameter, when cut vertically into two equal halves, is approximately 4618.141 cm³.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.