Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! Let's solve the problem step-by-step.
### Given Information:
1. The height [tex]\( h \)[/tex] of the cylinder is 60 cm.
2. The diameter of the cylinder is 14 cm.
3. When the cylinder is cut vertically, it is divided into two equal halves.
### Step-by-Step Solution:
1. Calculate the radius of the cylinder:
- The radius [tex]\( r \)[/tex] is half of the diameter.
[tex]\[ r = \frac{d}{2} = \frac{14 \, \text{cm}}{2} = 7 \, \text{cm} \][/tex]
2. Calculate the volume of the full cylinder:
- The volume [tex]\( V \)[/tex] of a cylinder is given by the formula:
[tex]\[ V = \pi r^2 h \][/tex]
- Here, [tex]\( r = 7 \, \text{cm} \)[/tex], [tex]\( h = 60 \, \text{cm} \)[/tex], and [tex]\( \pi \approx 3.1416 \)[/tex].
3. Insert the values into the volume formula:
[tex]\[ V = \pi \times (7 \, \text{cm})^2 \times 60 \, \text{cm} \][/tex]
- Squaring the radius:
[tex]\[ r^2 = (7 \, \text{cm})^2 = 49 \, \text{cm}^2 \][/tex]
- Multiplying by the height:
[tex]\[ r^2 \times h = 49 \, \text{cm}^2 \times 60 \, \text{cm} = 2940 \, \text{cm}^3 \][/tex]
- Multiplying by [tex]\( \pi \)[/tex]:
[tex]\[ V = \pi \times 2940 \, \text{cm}^3 \approx 3.1416 \times 2940 \, \text{cm}^3 \approx 9236.282 \, \text{cm}^3 \][/tex]
4. Divide the volume of the full cylinder by 2 to find the volume of one half:
[tex]\[ \text{Volume of one half} = \frac{9236.282 \, \text{cm}^3}{2} \approx 4618.141 \, \text{cm}^3 \][/tex]
### Final Answer:
The volume of one half of the 60 cm high cylinder with a 14 cm diameter, when cut vertically into two equal halves, is approximately 4618.141 cm³.
### Given Information:
1. The height [tex]\( h \)[/tex] of the cylinder is 60 cm.
2. The diameter of the cylinder is 14 cm.
3. When the cylinder is cut vertically, it is divided into two equal halves.
### Step-by-Step Solution:
1. Calculate the radius of the cylinder:
- The radius [tex]\( r \)[/tex] is half of the diameter.
[tex]\[ r = \frac{d}{2} = \frac{14 \, \text{cm}}{2} = 7 \, \text{cm} \][/tex]
2. Calculate the volume of the full cylinder:
- The volume [tex]\( V \)[/tex] of a cylinder is given by the formula:
[tex]\[ V = \pi r^2 h \][/tex]
- Here, [tex]\( r = 7 \, \text{cm} \)[/tex], [tex]\( h = 60 \, \text{cm} \)[/tex], and [tex]\( \pi \approx 3.1416 \)[/tex].
3. Insert the values into the volume formula:
[tex]\[ V = \pi \times (7 \, \text{cm})^2 \times 60 \, \text{cm} \][/tex]
- Squaring the radius:
[tex]\[ r^2 = (7 \, \text{cm})^2 = 49 \, \text{cm}^2 \][/tex]
- Multiplying by the height:
[tex]\[ r^2 \times h = 49 \, \text{cm}^2 \times 60 \, \text{cm} = 2940 \, \text{cm}^3 \][/tex]
- Multiplying by [tex]\( \pi \)[/tex]:
[tex]\[ V = \pi \times 2940 \, \text{cm}^3 \approx 3.1416 \times 2940 \, \text{cm}^3 \approx 9236.282 \, \text{cm}^3 \][/tex]
4. Divide the volume of the full cylinder by 2 to find the volume of one half:
[tex]\[ \text{Volume of one half} = \frac{9236.282 \, \text{cm}^3}{2} \approx 4618.141 \, \text{cm}^3 \][/tex]
### Final Answer:
The volume of one half of the 60 cm high cylinder with a 14 cm diameter, when cut vertically into two equal halves, is approximately 4618.141 cm³.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.