Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the distance between the points [tex]\((-9, -11)\)[/tex] and [tex]\((13, 3)\)[/tex], you can use the distance formula, which is derived from the Pythagorean theorem. The distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in a coordinate plane is given by:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, the coordinates of the two points are:
- Point 1: [tex]\((-9, -11)\)[/tex], where [tex]\(x_1 = -9\)[/tex] and [tex]\(y_1 = -11\)[/tex]
- Point 2: [tex]\((13, 3)\)[/tex], where [tex]\(x_2 = 13\)[/tex] and [tex]\(y_2 = 3\)[/tex]
Now, substituting these values into the distance formula:
1. Calculate the difference in the x-coordinates:
[tex]\[ x_2 - x_1 = 13 - (-9) = 13 + 9 = 22 \][/tex]
2. Calculate the difference in the y-coordinates:
[tex]\[ y_2 - y_1 = 3 - (-11) = 3 + 11 = 14 \][/tex]
3. Square the differences:
[tex]\[ (x_2 - x_1)^2 = 22^2 = 484 \][/tex]
[tex]\[ (y_2 - y_1)^2 = 14^2 = 196 \][/tex]
4. Add these squared differences:
[tex]\[ (x_2 - x_1)^2 + (y_2 - y_1)^2 = 484 + 196 = 680 \][/tex]
5. Take the square root of the sum to find the distance:
[tex]\[ \text{Distance} = \sqrt{680} \approx 26.076809620810597 \][/tex]
Therefore, the distance between the points [tex]\((-9, -11)\)[/tex] and [tex]\((13, 3)\)[/tex] is approximately [tex]\(26.077\)[/tex]. This can be visualized on a graph by plotting the points and using the distance formula to determine the distance between them.
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, the coordinates of the two points are:
- Point 1: [tex]\((-9, -11)\)[/tex], where [tex]\(x_1 = -9\)[/tex] and [tex]\(y_1 = -11\)[/tex]
- Point 2: [tex]\((13, 3)\)[/tex], where [tex]\(x_2 = 13\)[/tex] and [tex]\(y_2 = 3\)[/tex]
Now, substituting these values into the distance formula:
1. Calculate the difference in the x-coordinates:
[tex]\[ x_2 - x_1 = 13 - (-9) = 13 + 9 = 22 \][/tex]
2. Calculate the difference in the y-coordinates:
[tex]\[ y_2 - y_1 = 3 - (-11) = 3 + 11 = 14 \][/tex]
3. Square the differences:
[tex]\[ (x_2 - x_1)^2 = 22^2 = 484 \][/tex]
[tex]\[ (y_2 - y_1)^2 = 14^2 = 196 \][/tex]
4. Add these squared differences:
[tex]\[ (x_2 - x_1)^2 + (y_2 - y_1)^2 = 484 + 196 = 680 \][/tex]
5. Take the square root of the sum to find the distance:
[tex]\[ \text{Distance} = \sqrt{680} \approx 26.076809620810597 \][/tex]
Therefore, the distance between the points [tex]\((-9, -11)\)[/tex] and [tex]\((13, 3)\)[/tex] is approximately [tex]\(26.077\)[/tex]. This can be visualized on a graph by plotting the points and using the distance formula to determine the distance between them.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.