Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the correct expression representing the width of the kitchen floor in terms of [tex]\( x \)[/tex], we need to follow these steps:
1. Understand the given area expression:
The given area of the kitchen floor is [tex]\( 4x^2 + 24x + 27 \)[/tex].
2. Determine the length of the kitchen floor:
It is given that the length [tex]\( l \)[/tex] of the floor is 9 feet more than twice the length of a tile [tex]\( x \)[/tex].
Therefore, the length [tex]\( l \)[/tex] can be expressed as:
[tex]\[ l = 2x + 9 \][/tex]
3. Find the width by dividing the area by the length:
The area of a rectangle is given by the formula:
[tex]\[ \text{Area} = \text{Length} \times \text{Width} \][/tex]
Let [tex]\( w \)[/tex] represent the width. Then,
[tex]\[ 4x^2 + 24x + 27 = (2x + 9) \times w \][/tex]
To find [tex]\( w \)[/tex], we divide the area expression by the length:
[tex]\[ w = \frac{4x^2 + 24x + 27}{2x + 9} \][/tex]
4. Factor the quadratic expression:
We need to factor [tex]\( 4x^2 + 24x + 27 \)[/tex]. Let's try to factor it:
[tex]\[ 4x^2 + 24x + 27 = (2x + 3)(2x + 9) \][/tex]
We can check this factorization by expanding it back:
[tex]\[ (2x + 3)(2x + 9) = 2x \cdot 2x + 2x \cdot 9 + 3 \cdot 2x + 3 \cdot 9 = 4x^2 + 18x + 6x + 27 = 4x^2 + 24x + 27 \][/tex]
The factorization is correct.
5. Determine the width:
Recall, we had:
[tex]\[ 4x^2 + 24x + 27 = (2x + 9) \times w \][/tex]
Substituting the factorized form:
[tex]\[ (2x + 3)(2x + 9) = (2x + 9) \times w \][/tex]
We can see that:
[tex]\[ w = 2x + 3 \][/tex]
Therefore, the expression representing the width [tex]\( w \)[/tex] of the kitchen in terms of [tex]\( x \)[/tex] is:
[tex]\[ 2x + 3 \][/tex]
Thus, the correct answer is [tex]\( 2x + 3 \)[/tex].
1. Understand the given area expression:
The given area of the kitchen floor is [tex]\( 4x^2 + 24x + 27 \)[/tex].
2. Determine the length of the kitchen floor:
It is given that the length [tex]\( l \)[/tex] of the floor is 9 feet more than twice the length of a tile [tex]\( x \)[/tex].
Therefore, the length [tex]\( l \)[/tex] can be expressed as:
[tex]\[ l = 2x + 9 \][/tex]
3. Find the width by dividing the area by the length:
The area of a rectangle is given by the formula:
[tex]\[ \text{Area} = \text{Length} \times \text{Width} \][/tex]
Let [tex]\( w \)[/tex] represent the width. Then,
[tex]\[ 4x^2 + 24x + 27 = (2x + 9) \times w \][/tex]
To find [tex]\( w \)[/tex], we divide the area expression by the length:
[tex]\[ w = \frac{4x^2 + 24x + 27}{2x + 9} \][/tex]
4. Factor the quadratic expression:
We need to factor [tex]\( 4x^2 + 24x + 27 \)[/tex]. Let's try to factor it:
[tex]\[ 4x^2 + 24x + 27 = (2x + 3)(2x + 9) \][/tex]
We can check this factorization by expanding it back:
[tex]\[ (2x + 3)(2x + 9) = 2x \cdot 2x + 2x \cdot 9 + 3 \cdot 2x + 3 \cdot 9 = 4x^2 + 18x + 6x + 27 = 4x^2 + 24x + 27 \][/tex]
The factorization is correct.
5. Determine the width:
Recall, we had:
[tex]\[ 4x^2 + 24x + 27 = (2x + 9) \times w \][/tex]
Substituting the factorized form:
[tex]\[ (2x + 3)(2x + 9) = (2x + 9) \times w \][/tex]
We can see that:
[tex]\[ w = 2x + 3 \][/tex]
Therefore, the expression representing the width [tex]\( w \)[/tex] of the kitchen in terms of [tex]\( x \)[/tex] is:
[tex]\[ 2x + 3 \][/tex]
Thus, the correct answer is [tex]\( 2x + 3 \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.