Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's break down the problem step-by-step to find the volume of a square pyramid with a given base area and height:
1. Identify the given values:
- The area of the base ([tex]\(A\)[/tex]) of the square pyramid is 441 square feet.
- The height ([tex]\(h\)[/tex]) of the pyramid is 24 feet.
2. Recall the formula for the volume of a square pyramid:
[tex]\[ \text{Volume} = \frac{1}{3} \times (\text{Base Area}) \times (\text{Height}) \][/tex]
Here, substituting the given values:
[tex]\[ \text{Volume} = \frac{1}{3} \times 441 \text{ ft}^2 \times 24 \text{ ft} \][/tex]
3. Calculate the volume:
[tex]\[ \text{Volume} = \frac{1}{3} \times 441 \times 24 \][/tex]
4. Break it down further:
[tex]\[ 441 \times 24 = 10584 \][/tex]
[tex]\[ \frac{1}{3} \times 10584 = 3528 \text{ ft}^3 \][/tex]
5. Round the volume to the nearest tenth:
- The volume, calculated as [tex]\(3528\)[/tex] cubic feet, is already a whole number.
- Thus, when rounded to the nearest tenth, it remains [tex]\(3528.0\)[/tex] cubic feet.
Therefore, the volume of the square pyramid, rounded to the nearest tenth, is [tex]\(3528.0\)[/tex] cubic feet.
1. Identify the given values:
- The area of the base ([tex]\(A\)[/tex]) of the square pyramid is 441 square feet.
- The height ([tex]\(h\)[/tex]) of the pyramid is 24 feet.
2. Recall the formula for the volume of a square pyramid:
[tex]\[ \text{Volume} = \frac{1}{3} \times (\text{Base Area}) \times (\text{Height}) \][/tex]
Here, substituting the given values:
[tex]\[ \text{Volume} = \frac{1}{3} \times 441 \text{ ft}^2 \times 24 \text{ ft} \][/tex]
3. Calculate the volume:
[tex]\[ \text{Volume} = \frac{1}{3} \times 441 \times 24 \][/tex]
4. Break it down further:
[tex]\[ 441 \times 24 = 10584 \][/tex]
[tex]\[ \frac{1}{3} \times 10584 = 3528 \text{ ft}^3 \][/tex]
5. Round the volume to the nearest tenth:
- The volume, calculated as [tex]\(3528\)[/tex] cubic feet, is already a whole number.
- Thus, when rounded to the nearest tenth, it remains [tex]\(3528.0\)[/tex] cubic feet.
Therefore, the volume of the square pyramid, rounded to the nearest tenth, is [tex]\(3528.0\)[/tex] cubic feet.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.