Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's solve for the vertical asymptote of the function [tex]\(y = \log(x - 4)\)[/tex].
1. Understand the argument of the logarithmic function:
The function [tex]\( y = \log(x - 4) \)[/tex] is defined only when the argument inside the logarithm, [tex]\( x - 4 \)[/tex], is positive. This means:
[tex]\[ x - 4 > 0 \][/tex]
Therefore,
[tex]\[ x > 4 \][/tex]
2. Vertical asymptote:
A vertical asymptote occurs where the argument of the logarithm goes to zero. For the function [tex]\( y = \log(x - 4) \)[/tex], the argument inside the logarithm is [tex]\( x - 4 \)[/tex].
3. Set the argument equal to zero:
To find the vertical asymptote, set the argument [tex]\( x - 4 \)[/tex] equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 4 = 0 \][/tex]
[tex]\[ x = 4 \][/tex]
Thus, the vertical asymptote of the function [tex]\( y = \log(x - 4) \)[/tex] is at:
[tex]\[ x = 4 \][/tex]
Hence, the final answer is [tex]\( \boxed{4} \)[/tex].
1. Understand the argument of the logarithmic function:
The function [tex]\( y = \log(x - 4) \)[/tex] is defined only when the argument inside the logarithm, [tex]\( x - 4 \)[/tex], is positive. This means:
[tex]\[ x - 4 > 0 \][/tex]
Therefore,
[tex]\[ x > 4 \][/tex]
2. Vertical asymptote:
A vertical asymptote occurs where the argument of the logarithm goes to zero. For the function [tex]\( y = \log(x - 4) \)[/tex], the argument inside the logarithm is [tex]\( x - 4 \)[/tex].
3. Set the argument equal to zero:
To find the vertical asymptote, set the argument [tex]\( x - 4 \)[/tex] equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 4 = 0 \][/tex]
[tex]\[ x = 4 \][/tex]
Thus, the vertical asymptote of the function [tex]\( y = \log(x - 4) \)[/tex] is at:
[tex]\[ x = 4 \][/tex]
Hence, the final answer is [tex]\( \boxed{4} \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.