Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the domain and range of the function [tex]\( y = \log_7(3 + 3x) \)[/tex], follow these steps:
### Domain
The domain of a logarithmic function [tex]\( \log_b(a) \)[/tex] requires that the argument [tex]\( a \)[/tex] must be greater than 0 since the logarithm of a non-positive number is not defined.
For the given function [tex]\( y = \log_7(3 + 3x) \)[/tex], the argument of the logarithm is [tex]\( 3 + 3x \)[/tex]. Therefore, we need:
[tex]\[ 3 + 3x > 0 \][/tex]
To solve for [tex]\( x \)[/tex], follow these steps:
[tex]\[ 3 + 3x > 0 \][/tex]
Subtract 3 from both sides:
[tex]\[ 3x > -3 \][/tex]
Divide by 3:
[tex]\[ x > -1 \][/tex]
Thus, the domain of the function in interval notation is:
[tex]\[ (-1, \infty) \][/tex]
### Range
The range of the logarithmic function [tex]\( y = \log_b(a) \)[/tex] where [tex]\( b > 0 \)[/tex] and [tex]\( b \neq 1 \)[/tex], is all real numbers because the logarithm can output any real number depending on the argument's value within its domain.
For our function [tex]\( y = \log_7(3 + 3x) \)[/tex], as long as [tex]\( 3 + 3x \)[/tex] is within its domain (i.e., [tex]\( > 0 \)[/tex]), [tex]\( y \)[/tex] can take any real value from [tex]\( -\infty \)[/tex] to [tex]\( \infty \)[/tex].
Thus, the range of the function in interval notation is:
[tex]\[ (-\infty, \infty) \][/tex]
In summary:
The domain is: [tex]\((-1, \infty)\)[/tex]
The range is: [tex]\((-\infty, \infty)\)[/tex]
### Domain
The domain of a logarithmic function [tex]\( \log_b(a) \)[/tex] requires that the argument [tex]\( a \)[/tex] must be greater than 0 since the logarithm of a non-positive number is not defined.
For the given function [tex]\( y = \log_7(3 + 3x) \)[/tex], the argument of the logarithm is [tex]\( 3 + 3x \)[/tex]. Therefore, we need:
[tex]\[ 3 + 3x > 0 \][/tex]
To solve for [tex]\( x \)[/tex], follow these steps:
[tex]\[ 3 + 3x > 0 \][/tex]
Subtract 3 from both sides:
[tex]\[ 3x > -3 \][/tex]
Divide by 3:
[tex]\[ x > -1 \][/tex]
Thus, the domain of the function in interval notation is:
[tex]\[ (-1, \infty) \][/tex]
### Range
The range of the logarithmic function [tex]\( y = \log_b(a) \)[/tex] where [tex]\( b > 0 \)[/tex] and [tex]\( b \neq 1 \)[/tex], is all real numbers because the logarithm can output any real number depending on the argument's value within its domain.
For our function [tex]\( y = \log_7(3 + 3x) \)[/tex], as long as [tex]\( 3 + 3x \)[/tex] is within its domain (i.e., [tex]\( > 0 \)[/tex]), [tex]\( y \)[/tex] can take any real value from [tex]\( -\infty \)[/tex] to [tex]\( \infty \)[/tex].
Thus, the range of the function in interval notation is:
[tex]\[ (-\infty, \infty) \][/tex]
In summary:
The domain is: [tex]\((-1, \infty)\)[/tex]
The range is: [tex]\((-\infty, \infty)\)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.