Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Find the domain of [tex]$y = \log(1 - 2x)$[/tex]. (Use interval notation.)

The domain is: [tex]$\square$[/tex]


Sagot :

To find the domain of the function [tex]\( y = \log(1 - 2x) \)[/tex], we need to determine the values of [tex]\( x \)[/tex] for which the argument of the logarithm is positive, as the logarithmic function is only defined for positive arguments.

1. Start by identifying the condition for the argument of the logarithm to be positive:
[tex]\[ 1 - 2x > 0 \][/tex]

2. Solve the inequality:
[tex]\[ 1 - 2x > 0 \][/tex]
Subtract 1 from both sides:
[tex]\[ -2x > -1 \][/tex]
Divide both sides by -2. Remember that dividing by a negative number reverses the inequality:
[tex]\[ x < \frac{1}{2} \][/tex]

3. This inequality tells us that [tex]\( x \)[/tex] must be less than [tex]\( \frac{1}{2} \)[/tex].

So, the domain of the function [tex]\( y = \log(1 - 2x) \)[/tex] in interval notation is:
[tex]\[ (-\infty, \frac{1}{2}) \][/tex]

Thus, the domain is:
[tex]\[ \boxed{(-\infty, \frac{1}{2})} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.