Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Find the domain of [tex]$y = \log(1 - 2x)$[/tex]. (Use interval notation.)

The domain is: [tex]$\square$[/tex]


Sagot :

To find the domain of the function [tex]\( y = \log(1 - 2x) \)[/tex], we need to determine the values of [tex]\( x \)[/tex] for which the argument of the logarithm is positive, as the logarithmic function is only defined for positive arguments.

1. Start by identifying the condition for the argument of the logarithm to be positive:
[tex]\[ 1 - 2x > 0 \][/tex]

2. Solve the inequality:
[tex]\[ 1 - 2x > 0 \][/tex]
Subtract 1 from both sides:
[tex]\[ -2x > -1 \][/tex]
Divide both sides by -2. Remember that dividing by a negative number reverses the inequality:
[tex]\[ x < \frac{1}{2} \][/tex]

3. This inequality tells us that [tex]\( x \)[/tex] must be less than [tex]\( \frac{1}{2} \)[/tex].

So, the domain of the function [tex]\( y = \log(1 - 2x) \)[/tex] in interval notation is:
[tex]\[ (-\infty, \frac{1}{2}) \][/tex]

Thus, the domain is:
[tex]\[ \boxed{(-\infty, \frac{1}{2})} \][/tex]