Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Solve the system of equations by elimination.

[tex]\[
\left\{
\begin{array}{l}
-12x - 15y = -9 \\
-4x - 5y = -3
\end{array}
\right.
\][/tex]

A. [tex]\((2, -7)\)[/tex]

B. [tex]\((-2, -7)\)[/tex]

C. [tex]\((-2, -5)\)[/tex]

D. Infinite number of solutions


Sagot :

To solve the system of equations using elimination, follow these steps:

Given equations:
[tex]\[ \left\{\begin{array}{l} -12x - 15y = -9 \quad \text{(Equation 1)} \\ -4x - 5y = -3 \quad \text{(Equation 2)} \end{array}\right. \][/tex]

### Step 1: Align the equations
Align both equations for easy comparison:
[tex]\[ \begin{array}{rcl} -12x - 15y & = & -9 \quad \text{(Equation 1)} \\ -4x - 5y & = & -3 \quad \text{(Equation 2)} \end{array} \][/tex]

### Step 2: Manipulate the equations to eliminate a variable
First, modify Equation 2 to make the coefficient of [tex]\(x\)[/tex] equal to the coefficient of [tex]\(x\)[/tex] in Equation 1. To do this, multiply Equation 2 by 3:
[tex]\[ 3 \cdot (-4x - 5y) = 3 \cdot (-3) \][/tex]
[tex]\[ -12x - 15y = -9 \quad \text{(Equation 3)} \][/tex]

Now we have:
[tex]\[ \begin{array}{rcl} -12x - 15y & = & -9 \quad \text{(Equation 1)} \\ -12x - 15y & = & -9 \quad \text{(Equation 3)} \end{array} \][/tex]

### Step 3: Compare the equations
Notice that Equation 1 and Equation 3 are identical. Subtracting Equation 3 from Equation 1 results in:
[tex]\[ (-12x - 15y) - (-12x - 15y) = -9 - (-9) \][/tex]
[tex]\[ 0 = 0 \][/tex]

### Step 4: Interpret the result
The result [tex]\(0 = 0\)[/tex] indicates that the two original equations are essentially the same. This means that the system of equations does not have a unique solution. Instead, the equations represent the same line, implying an infinite number of solutions.

### Conclusion
The system of equations:
[tex]\[ \left\{\begin{array}{l} -12x - 15y = -9 \\ -4x - 5y = -3 \end{array}\right. \][/tex]
has an infinite number of solutions, which means any point [tex]\((x, y)\)[/tex] that satisfies one equation will automatically satisfy the other.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.