Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's analyze the quadratic function step-by-step to determine the correct statement regarding its vertex.
Given the function:
[tex]\[ m(x) = -(x+1)^2 + 4 \][/tex]
### Step 1: Identify the Vertex
A quadratic function of the form [tex]\( m(x) = a(x-h)^2 + k \)[/tex] has its vertex at the point [tex]\((h, k)\)[/tex].
Comparing [tex]\( m(x) = -(x+1)^2 + 4 \)[/tex] with the standard form [tex]\( a(x-h)^2 + k \)[/tex]:
- The expression [tex]\((x+1)\)[/tex] can be written as [tex]\((x - (-1))\)[/tex]. Hence, [tex]\( h = -1 \)[/tex].
- The constant term [tex]\( +4 \)[/tex] represents [tex]\( k \)[/tex].
So, the vertex of the quadratic function [tex]\( m(x) = -(x+1)^2 + 4 \)[/tex] is at the point [tex]\((-1, 4)\)[/tex].
### Step 2: Determine Whether the Vertex is a Maximum or Minimum
The sign of the coefficient [tex]\( a \)[/tex] in the quadratic function [tex]\( a(x-h)^2 + k \)[/tex] determines if the vertex is a maximum or minimum.
- If [tex]\( a > 0 \)[/tex], the parabola opens upwards, and the vertex is a minimum point.
- If [tex]\( a < 0 \)[/tex], the parabola opens downwards, and the vertex is a maximum point.
In the given function [tex]\( m(x) = -(x+1)^2 + 4 \)[/tex], the coefficient of [tex]\((x+1)^2\)[/tex] is [tex]\(-1\)[/tex], which is less than zero ([tex]\(-1 < 0\)[/tex]). Therefore, the parabola opens downwards, and the vertex represents a maximum point.
### Conclusion
Considering the vertex [tex]\((-1, 4)\)[/tex] and that the parabola opens downwards, the correct statement is:
- Its vertex is a maximum and is located at [tex]\((-1, 4)\)[/tex].
Thus, the correct choice is:
Its vertex is a maximum and is located at [tex]\((-1, 4)\)[/tex].
Given the function:
[tex]\[ m(x) = -(x+1)^2 + 4 \][/tex]
### Step 1: Identify the Vertex
A quadratic function of the form [tex]\( m(x) = a(x-h)^2 + k \)[/tex] has its vertex at the point [tex]\((h, k)\)[/tex].
Comparing [tex]\( m(x) = -(x+1)^2 + 4 \)[/tex] with the standard form [tex]\( a(x-h)^2 + k \)[/tex]:
- The expression [tex]\((x+1)\)[/tex] can be written as [tex]\((x - (-1))\)[/tex]. Hence, [tex]\( h = -1 \)[/tex].
- The constant term [tex]\( +4 \)[/tex] represents [tex]\( k \)[/tex].
So, the vertex of the quadratic function [tex]\( m(x) = -(x+1)^2 + 4 \)[/tex] is at the point [tex]\((-1, 4)\)[/tex].
### Step 2: Determine Whether the Vertex is a Maximum or Minimum
The sign of the coefficient [tex]\( a \)[/tex] in the quadratic function [tex]\( a(x-h)^2 + k \)[/tex] determines if the vertex is a maximum or minimum.
- If [tex]\( a > 0 \)[/tex], the parabola opens upwards, and the vertex is a minimum point.
- If [tex]\( a < 0 \)[/tex], the parabola opens downwards, and the vertex is a maximum point.
In the given function [tex]\( m(x) = -(x+1)^2 + 4 \)[/tex], the coefficient of [tex]\((x+1)^2\)[/tex] is [tex]\(-1\)[/tex], which is less than zero ([tex]\(-1 < 0\)[/tex]). Therefore, the parabola opens downwards, and the vertex represents a maximum point.
### Conclusion
Considering the vertex [tex]\((-1, 4)\)[/tex] and that the parabola opens downwards, the correct statement is:
- Its vertex is a maximum and is located at [tex]\((-1, 4)\)[/tex].
Thus, the correct choice is:
Its vertex is a maximum and is located at [tex]\((-1, 4)\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.