Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the slope of the line that is perpendicular to the given line with the equation [tex]\(-2y = 3x + 7\)[/tex], we need to follow these steps:
1. Rewrite the equation of the given line in the slope-intercept form [tex]\( y = mx + b \)[/tex]:
The original equation is:
[tex]\[ -2y = 3x + 7 \][/tex]
We want to express this in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] represents the slope.
First, isolate [tex]\( y \)[/tex] by dividing every term by [tex]\(-2\)[/tex]:
[tex]\[ y = -\frac{3}{2}x - \frac{7}{2} \][/tex]
2. Identify the slope of the given line:
From the equation [tex]\( y = -\frac{3}{2}x - \frac{7}{2} \)[/tex], we can see that the slope [tex]\( m \)[/tex] of the original line is:
[tex]\[ m = -\frac{3}{2} \][/tex]
3. Determine the slope of the perpendicular line:
The slopes of perpendicular lines are negative reciprocals of each other. The negative reciprocal of a number [tex]\( a \)[/tex] is [tex]\(-\frac{1}{a}\)[/tex].
Thus, the negative reciprocal of the original slope [tex]\(-\frac{3}{2}\)[/tex] is:
[tex]\[ -\left(\frac{1}{-\frac{3}{2}}\right) = \frac{2}{3} \][/tex]
Therefore, the slope of the line that is perpendicular to the given line is:
[tex]\[ \boxed{\frac{2}{3}} \][/tex]
1. Rewrite the equation of the given line in the slope-intercept form [tex]\( y = mx + b \)[/tex]:
The original equation is:
[tex]\[ -2y = 3x + 7 \][/tex]
We want to express this in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] represents the slope.
First, isolate [tex]\( y \)[/tex] by dividing every term by [tex]\(-2\)[/tex]:
[tex]\[ y = -\frac{3}{2}x - \frac{7}{2} \][/tex]
2. Identify the slope of the given line:
From the equation [tex]\( y = -\frac{3}{2}x - \frac{7}{2} \)[/tex], we can see that the slope [tex]\( m \)[/tex] of the original line is:
[tex]\[ m = -\frac{3}{2} \][/tex]
3. Determine the slope of the perpendicular line:
The slopes of perpendicular lines are negative reciprocals of each other. The negative reciprocal of a number [tex]\( a \)[/tex] is [tex]\(-\frac{1}{a}\)[/tex].
Thus, the negative reciprocal of the original slope [tex]\(-\frac{3}{2}\)[/tex] is:
[tex]\[ -\left(\frac{1}{-\frac{3}{2}}\right) = \frac{2}{3} \][/tex]
Therefore, the slope of the line that is perpendicular to the given line is:
[tex]\[ \boxed{\frac{2}{3}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.