Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the expression [tex]\(\log \left(\frac{x^9 y^{16}}{z^{13}}\right)\)[/tex] using properties of logarithms, let's proceed step-by-step:
1. Review the Properties of Logarithms:
- The logarithm of a product: [tex]\(\log(ab) = \log(a) + \log(b)\)[/tex]
- The logarithm of a quotient: [tex]\(\log \left(\frac{a}{b}\right) = \log(a) - \log(b)\)[/tex]
- The logarithm of a power: [tex]\(\log(a^n) = n \log(a)\)[/tex]
2. Apply the Logarithm of a Quotient:
We start with the logarithm of the given fraction:
[tex]\[ \log \left(\frac{x^9 y^{16}}{z^{13}}\right) = \log(x^9 y^{16}) - \log(z^{13}) \][/tex]
3. Apply the Logarithm of a Product:
Next, we apply the property of the logarithm of a product to the numerator:
[tex]\[ \log(x^9 y^{16}) = \log(x^9) + \log(y^{16}) \][/tex]
4. Apply the Logarithm of a Power:
Now we apply the property of the logarithm of a power to each term:
[tex]\[ \log(x^9) = 9 \log(x) \][/tex]
[tex]\[ \log(y^{16}) = 16 \log(y) \][/tex]
[tex]\[ \log(z^{13}) = 13 \log(z) \][/tex]
5. Combine All Steps:
Combine the logs we have applied to get the simplified result:
[tex]\[ \log \left(\frac{x^9 y^{16}}{z^{13}}\right) = \log(x^9 y^{16}) - \log(z^{13}) \][/tex]
[tex]\[ = \left(9 \log(x) + 16 \log(y)\right) - 13 \log(z) \][/tex]
6. Final Answer:
Therefore, the expression simplified using logarithmic properties is:
[tex]\[ \log \left(\frac{x^9 y^{16}}{z^{13}}\right) = 9 \log(x) + 16 \log(y) - 13 \log(z) \][/tex]
This is the detailed, step-by-step solution to the given question.
1. Review the Properties of Logarithms:
- The logarithm of a product: [tex]\(\log(ab) = \log(a) + \log(b)\)[/tex]
- The logarithm of a quotient: [tex]\(\log \left(\frac{a}{b}\right) = \log(a) - \log(b)\)[/tex]
- The logarithm of a power: [tex]\(\log(a^n) = n \log(a)\)[/tex]
2. Apply the Logarithm of a Quotient:
We start with the logarithm of the given fraction:
[tex]\[ \log \left(\frac{x^9 y^{16}}{z^{13}}\right) = \log(x^9 y^{16}) - \log(z^{13}) \][/tex]
3. Apply the Logarithm of a Product:
Next, we apply the property of the logarithm of a product to the numerator:
[tex]\[ \log(x^9 y^{16}) = \log(x^9) + \log(y^{16}) \][/tex]
4. Apply the Logarithm of a Power:
Now we apply the property of the logarithm of a power to each term:
[tex]\[ \log(x^9) = 9 \log(x) \][/tex]
[tex]\[ \log(y^{16}) = 16 \log(y) \][/tex]
[tex]\[ \log(z^{13}) = 13 \log(z) \][/tex]
5. Combine All Steps:
Combine the logs we have applied to get the simplified result:
[tex]\[ \log \left(\frac{x^9 y^{16}}{z^{13}}\right) = \log(x^9 y^{16}) - \log(z^{13}) \][/tex]
[tex]\[ = \left(9 \log(x) + 16 \log(y)\right) - 13 \log(z) \][/tex]
6. Final Answer:
Therefore, the expression simplified using logarithmic properties is:
[tex]\[ \log \left(\frac{x^9 y^{16}}{z^{13}}\right) = 9 \log(x) + 16 \log(y) - 13 \log(z) \][/tex]
This is the detailed, step-by-step solution to the given question.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.