Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the expression [tex]\(\log \left(\frac{x^9 y^{16}}{z^{13}}\right)\)[/tex] using properties of logarithms, let's proceed step-by-step:
1. Review the Properties of Logarithms:
- The logarithm of a product: [tex]\(\log(ab) = \log(a) + \log(b)\)[/tex]
- The logarithm of a quotient: [tex]\(\log \left(\frac{a}{b}\right) = \log(a) - \log(b)\)[/tex]
- The logarithm of a power: [tex]\(\log(a^n) = n \log(a)\)[/tex]
2. Apply the Logarithm of a Quotient:
We start with the logarithm of the given fraction:
[tex]\[ \log \left(\frac{x^9 y^{16}}{z^{13}}\right) = \log(x^9 y^{16}) - \log(z^{13}) \][/tex]
3. Apply the Logarithm of a Product:
Next, we apply the property of the logarithm of a product to the numerator:
[tex]\[ \log(x^9 y^{16}) = \log(x^9) + \log(y^{16}) \][/tex]
4. Apply the Logarithm of a Power:
Now we apply the property of the logarithm of a power to each term:
[tex]\[ \log(x^9) = 9 \log(x) \][/tex]
[tex]\[ \log(y^{16}) = 16 \log(y) \][/tex]
[tex]\[ \log(z^{13}) = 13 \log(z) \][/tex]
5. Combine All Steps:
Combine the logs we have applied to get the simplified result:
[tex]\[ \log \left(\frac{x^9 y^{16}}{z^{13}}\right) = \log(x^9 y^{16}) - \log(z^{13}) \][/tex]
[tex]\[ = \left(9 \log(x) + 16 \log(y)\right) - 13 \log(z) \][/tex]
6. Final Answer:
Therefore, the expression simplified using logarithmic properties is:
[tex]\[ \log \left(\frac{x^9 y^{16}}{z^{13}}\right) = 9 \log(x) + 16 \log(y) - 13 \log(z) \][/tex]
This is the detailed, step-by-step solution to the given question.
1. Review the Properties of Logarithms:
- The logarithm of a product: [tex]\(\log(ab) = \log(a) + \log(b)\)[/tex]
- The logarithm of a quotient: [tex]\(\log \left(\frac{a}{b}\right) = \log(a) - \log(b)\)[/tex]
- The logarithm of a power: [tex]\(\log(a^n) = n \log(a)\)[/tex]
2. Apply the Logarithm of a Quotient:
We start with the logarithm of the given fraction:
[tex]\[ \log \left(\frac{x^9 y^{16}}{z^{13}}\right) = \log(x^9 y^{16}) - \log(z^{13}) \][/tex]
3. Apply the Logarithm of a Product:
Next, we apply the property of the logarithm of a product to the numerator:
[tex]\[ \log(x^9 y^{16}) = \log(x^9) + \log(y^{16}) \][/tex]
4. Apply the Logarithm of a Power:
Now we apply the property of the logarithm of a power to each term:
[tex]\[ \log(x^9) = 9 \log(x) \][/tex]
[tex]\[ \log(y^{16}) = 16 \log(y) \][/tex]
[tex]\[ \log(z^{13}) = 13 \log(z) \][/tex]
5. Combine All Steps:
Combine the logs we have applied to get the simplified result:
[tex]\[ \log \left(\frac{x^9 y^{16}}{z^{13}}\right) = \log(x^9 y^{16}) - \log(z^{13}) \][/tex]
[tex]\[ = \left(9 \log(x) + 16 \log(y)\right) - 13 \log(z) \][/tex]
6. Final Answer:
Therefore, the expression simplified using logarithmic properties is:
[tex]\[ \log \left(\frac{x^9 y^{16}}{z^{13}}\right) = 9 \log(x) + 16 \log(y) - 13 \log(z) \][/tex]
This is the detailed, step-by-step solution to the given question.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.