Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine whether the graph of the quadratic equation [tex]\( y = 3x^2 - 4x + 2 \)[/tex] opens upward or downward, we need to consider the coefficient of the [tex]\( x^2 \)[/tex] term, which is denoted by [tex]\( a \)[/tex] in the general form of a quadratic equation [tex]\( y = ax^2 + bx + c \)[/tex].
The behavior of the graph depends on the sign of [tex]\( a \)[/tex]:
- If [tex]\( a \)[/tex] is positive, the parabola (graph) opens upwards.
- If [tex]\( a \)[/tex] is negative, the parabola opens downwards.
In the given equation [tex]\( y = 3x^2 - 4x + 2 \)[/tex]:
- The coefficient [tex]\( a \)[/tex] is 3.
Since [tex]\( a = 3 \)[/tex] is positive, the graph of the equation opens upwards, not downwards.
Therefore, the statement "The graph of [tex]\( y = 3x^2 - 4x + 2 \)[/tex] opens downward" is:
B. False
The behavior of the graph depends on the sign of [tex]\( a \)[/tex]:
- If [tex]\( a \)[/tex] is positive, the parabola (graph) opens upwards.
- If [tex]\( a \)[/tex] is negative, the parabola opens downwards.
In the given equation [tex]\( y = 3x^2 - 4x + 2 \)[/tex]:
- The coefficient [tex]\( a \)[/tex] is 3.
Since [tex]\( a = 3 \)[/tex] is positive, the graph of the equation opens upwards, not downwards.
Therefore, the statement "The graph of [tex]\( y = 3x^2 - 4x + 2 \)[/tex] opens downward" is:
B. False
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.