Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's proceed with clarity and detail through each step of the hypothesis test.
### Step 1: Stating the Hypotheses
The sponsors want to test the hypothesis that children watch television at most [tex]\(20\)[/tex] hours per week.
- The null hypothesis ([tex]\(H_0\)[/tex]): [tex]\(\mu \leq 20\)[/tex]
- The alternative hypothesis ([tex]\(H_a\)[/tex]): [tex]\(\mu > 20\)[/tex]
### Step 2: Calculating the Standard Error
The standard error (SE) is calculated using the formula:
[tex]\[ \text{SE} = \frac{\sigma}{\sqrt{n}} \][/tex]
Where:
- [tex]\(\sigma\)[/tex] is the population standard deviation ([tex]\(6\)[/tex] hours)
- [tex]\(n\)[/tex] is the sample size ([tex]\(30\)[/tex])
Plugging in the values:
[tex]\[ \text{SE} = \frac{6}{\sqrt{30}} \approx 1.0954 \][/tex]
### Step 3: Calculating the Z-Test Statistic
The z-test statistic is calculated using the formula:
[tex]\[ Z = \frac{\bar{x} - \mu_0}{\text{SE}} \][/tex]
Where:
- [tex]\(\bar{x}\)[/tex] is the sample mean ([tex]\(20.2667\)[/tex])
- [tex]\(\mu_0\)[/tex] is the hypothesized mean ([tex]\(20\)[/tex])
- [tex]\(\text{SE}\)[/tex] is the standard error ([tex]\(1.0954\)[/tex])
Plugging in the values:
[tex]\[ Z = \frac{20.2667 - 20}{1.0954} \approx 0.2435 \][/tex]
### Step 4: Calculating the P-value
Given the Z-test value, the next step is to find the corresponding p-value. In this case, because this is a one-tailed test where we're testing if the mean is greater than the hypothesized mean, we take:
[tex]\[ \text{P-value} = 1 - \text{CDF}(Z) \][/tex]
For [tex]\( Z = 0.2435 \)[/tex]:
[tex]\[ \text{P-value} \approx 0.4038 \][/tex]
### Step 5: Making the Decision
We compare the p-value with the significance level ([tex]\(\alpha = 0.1\)[/tex]):
- If [tex]\( \text{P-value} \leq \alpha \)[/tex], we reject [tex]\( H_0 \)[/tex].
- If [tex]\( \text{P-value} > \alpha \)[/tex], we fail to reject [tex]\( H_0 \)[/tex].
Here,
[tex]\[ \text{P-value} = 0.4038 \][/tex]
[tex]\[ \alpha = 0.1 \][/tex]
Since [tex]\(0.4038 > 0.1\)[/tex], we fail to reject the null hypothesis [tex]\( H_0 \)[/tex]. This means there is insufficient evidence to conclude that children watch more than [tex]\( 20 \)[/tex] hours of television per week.
### Summary of Results
1. Alternative Hypothesis ([tex]\(H_a\)[/tex]): [tex]\(\mu > 20\)[/tex]
2. Standard Error: [tex]\( 1.0954 \)[/tex]
3. Test Statistic (Z-Test value): [tex]\( 0.2435 \)[/tex]
4. P-value: [tex]\( 0.4038 \)[/tex]
5. Conclusion: Fail to reject [tex]\( H_0 \)[/tex]. We accept the null hypothesis.
### Step 1: Stating the Hypotheses
The sponsors want to test the hypothesis that children watch television at most [tex]\(20\)[/tex] hours per week.
- The null hypothesis ([tex]\(H_0\)[/tex]): [tex]\(\mu \leq 20\)[/tex]
- The alternative hypothesis ([tex]\(H_a\)[/tex]): [tex]\(\mu > 20\)[/tex]
### Step 2: Calculating the Standard Error
The standard error (SE) is calculated using the formula:
[tex]\[ \text{SE} = \frac{\sigma}{\sqrt{n}} \][/tex]
Where:
- [tex]\(\sigma\)[/tex] is the population standard deviation ([tex]\(6\)[/tex] hours)
- [tex]\(n\)[/tex] is the sample size ([tex]\(30\)[/tex])
Plugging in the values:
[tex]\[ \text{SE} = \frac{6}{\sqrt{30}} \approx 1.0954 \][/tex]
### Step 3: Calculating the Z-Test Statistic
The z-test statistic is calculated using the formula:
[tex]\[ Z = \frac{\bar{x} - \mu_0}{\text{SE}} \][/tex]
Where:
- [tex]\(\bar{x}\)[/tex] is the sample mean ([tex]\(20.2667\)[/tex])
- [tex]\(\mu_0\)[/tex] is the hypothesized mean ([tex]\(20\)[/tex])
- [tex]\(\text{SE}\)[/tex] is the standard error ([tex]\(1.0954\)[/tex])
Plugging in the values:
[tex]\[ Z = \frac{20.2667 - 20}{1.0954} \approx 0.2435 \][/tex]
### Step 4: Calculating the P-value
Given the Z-test value, the next step is to find the corresponding p-value. In this case, because this is a one-tailed test where we're testing if the mean is greater than the hypothesized mean, we take:
[tex]\[ \text{P-value} = 1 - \text{CDF}(Z) \][/tex]
For [tex]\( Z = 0.2435 \)[/tex]:
[tex]\[ \text{P-value} \approx 0.4038 \][/tex]
### Step 5: Making the Decision
We compare the p-value with the significance level ([tex]\(\alpha = 0.1\)[/tex]):
- If [tex]\( \text{P-value} \leq \alpha \)[/tex], we reject [tex]\( H_0 \)[/tex].
- If [tex]\( \text{P-value} > \alpha \)[/tex], we fail to reject [tex]\( H_0 \)[/tex].
Here,
[tex]\[ \text{P-value} = 0.4038 \][/tex]
[tex]\[ \alpha = 0.1 \][/tex]
Since [tex]\(0.4038 > 0.1\)[/tex], we fail to reject the null hypothesis [tex]\( H_0 \)[/tex]. This means there is insufficient evidence to conclude that children watch more than [tex]\( 20 \)[/tex] hours of television per week.
### Summary of Results
1. Alternative Hypothesis ([tex]\(H_a\)[/tex]): [tex]\(\mu > 20\)[/tex]
2. Standard Error: [tex]\( 1.0954 \)[/tex]
3. Test Statistic (Z-Test value): [tex]\( 0.2435 \)[/tex]
4. P-value: [tex]\( 0.4038 \)[/tex]
5. Conclusion: Fail to reject [tex]\( H_0 \)[/tex]. We accept the null hypothesis.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.