Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the expression [tex]\(\ln e^{-9}\)[/tex], we can use properties of logarithms and exponents. Here's a step-by-step solution:
1. Understanding the notation: [tex]\(\ln\)[/tex] refers to the natural logarithm, which is the logarithm to the base [tex]\(e\)[/tex], where [tex]\(e\)[/tex] is approximately 2.71828.
2. Applying the logarithm property: One of the fundamental properties of logarithms is that [tex]\(\ln(e^x) = x\)[/tex]. This property is true because the natural logarithm function and the exponential function are inverses of each other.
3. Using the property on the given expression:
[tex]\[ \ln(e^{-9}) \][/tex]
According to the logarithmic property mentioned above, if we have [tex]\(\ln(e^x)\)[/tex], we can simplify it directly to [tex]\(x\)[/tex].
4. Simplifying the expression:
[tex]\[ \ln(e^{-9}) = -9 \][/tex]
Therefore, the value of [tex]\(\ln e^{-9}\)[/tex] is [tex]\(-9\)[/tex].
1. Understanding the notation: [tex]\(\ln\)[/tex] refers to the natural logarithm, which is the logarithm to the base [tex]\(e\)[/tex], where [tex]\(e\)[/tex] is approximately 2.71828.
2. Applying the logarithm property: One of the fundamental properties of logarithms is that [tex]\(\ln(e^x) = x\)[/tex]. This property is true because the natural logarithm function and the exponential function are inverses of each other.
3. Using the property on the given expression:
[tex]\[ \ln(e^{-9}) \][/tex]
According to the logarithmic property mentioned above, if we have [tex]\(\ln(e^x)\)[/tex], we can simplify it directly to [tex]\(x\)[/tex].
4. Simplifying the expression:
[tex]\[ \ln(e^{-9}) = -9 \][/tex]
Therefore, the value of [tex]\(\ln e^{-9}\)[/tex] is [tex]\(-9\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.