Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the given equation [tex]\( 3^n = 1519 \)[/tex] for [tex]\( n \)[/tex], we need to use logarithms and the change of base formula. Here are the steps in detail:
1. Convert the equation to logarithmic form:
The equation [tex]\( 3^n = 1519 \)[/tex] can be written in logarithmic form using the properties of logarithms. Specifically, we take the logarithm of both sides of the equation. Typically, we use the natural logarithm ([tex]\(\log\)[/tex]) or the common logarithm ([tex]\(\log_{10}\)[/tex]) for convenience. Here, we will take the natural logarithm ([tex]\(\log\)[/tex]) of both sides:
[tex]\[ \log(3^n) = \log(1519) \][/tex]
2. Use the power rule of logarithms:
The power rule states that [tex]\(\log(a^b) = b \cdot \log(a)\)[/tex]. Applying this to the left side of the equation, we get:
[tex]\[ n \cdot \log(3) = \log(1519) \][/tex]
3. Solve for [tex]\( n \)[/tex]:
Now, isolate [tex]\( n \)[/tex] by dividing both sides of the equation by [tex]\(\log(3)\)[/tex]:
[tex]\[ n = \frac{\log(1519)}{\log(3)} \][/tex]
4. Apply the change of base formula:
According to the change of base formula, [tex]\(\log_b(a) = \frac{\log(a)}{\log(b)}\)[/tex], where [tex]\( a = 1519 \)[/tex] and [tex]\( b = 3 \)[/tex]. Plug in the values into the formula to find [tex]\( n \)[/tex]:
[tex]\[ n = \frac{\log(1519)}{\log(3)} \][/tex]
5. Calculate the value of [tex]\( n \)[/tex]:
Using a calculator, we find:
[tex]\[ \log(1519) \approx 3.181771 \][/tex]
[tex]\[ \log(3) \approx 0.477121 \][/tex]
So:
[tex]\[ n \approx \frac{3.181771}{0.477121} \approx 6.668 \][/tex]
6. Round the answer to 3 decimal places:
The value of [tex]\( n \)[/tex], accurate to three decimal places, is:
[tex]\[ n \approx 6.668 \][/tex]
Thus, the value of [tex]\( n \)[/tex] is [tex]\( 6.668 \)[/tex] when rounded to three decimal places.
1. Convert the equation to logarithmic form:
The equation [tex]\( 3^n = 1519 \)[/tex] can be written in logarithmic form using the properties of logarithms. Specifically, we take the logarithm of both sides of the equation. Typically, we use the natural logarithm ([tex]\(\log\)[/tex]) or the common logarithm ([tex]\(\log_{10}\)[/tex]) for convenience. Here, we will take the natural logarithm ([tex]\(\log\)[/tex]) of both sides:
[tex]\[ \log(3^n) = \log(1519) \][/tex]
2. Use the power rule of logarithms:
The power rule states that [tex]\(\log(a^b) = b \cdot \log(a)\)[/tex]. Applying this to the left side of the equation, we get:
[tex]\[ n \cdot \log(3) = \log(1519) \][/tex]
3. Solve for [tex]\( n \)[/tex]:
Now, isolate [tex]\( n \)[/tex] by dividing both sides of the equation by [tex]\(\log(3)\)[/tex]:
[tex]\[ n = \frac{\log(1519)}{\log(3)} \][/tex]
4. Apply the change of base formula:
According to the change of base formula, [tex]\(\log_b(a) = \frac{\log(a)}{\log(b)}\)[/tex], where [tex]\( a = 1519 \)[/tex] and [tex]\( b = 3 \)[/tex]. Plug in the values into the formula to find [tex]\( n \)[/tex]:
[tex]\[ n = \frac{\log(1519)}{\log(3)} \][/tex]
5. Calculate the value of [tex]\( n \)[/tex]:
Using a calculator, we find:
[tex]\[ \log(1519) \approx 3.181771 \][/tex]
[tex]\[ \log(3) \approx 0.477121 \][/tex]
So:
[tex]\[ n \approx \frac{3.181771}{0.477121} \approx 6.668 \][/tex]
6. Round the answer to 3 decimal places:
The value of [tex]\( n \)[/tex], accurate to three decimal places, is:
[tex]\[ n \approx 6.668 \][/tex]
Thus, the value of [tex]\( n \)[/tex] is [tex]\( 6.668 \)[/tex] when rounded to three decimal places.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.