Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine whether the graph of the function [tex]\( v = 2x^2 - 4x + 2 \)[/tex] has a [tex]\( y \)[/tex]-intercept of [tex]\( (0, 2) \)[/tex], we need to evaluate the function at [tex]\( x = 0 \)[/tex].
1. Identify the general form for a quadratic function: The function given is [tex]\( v = 2x^2 - 4x + 2 \)[/tex].
2. Substitute [tex]\( x = 0 \)[/tex] into the function: To find the [tex]\( y \)[/tex]-intercept, we set [tex]\( x \)[/tex] to [tex]\( 0 \)[/tex] because the [tex]\( y \)[/tex]-intercept is where the graph crosses the [tex]\( y \)[/tex]-axis (which occurs when [tex]\( x = 0 \)[/tex]).
3. Calculate the value of [tex]\( v \)[/tex]:
[tex]\[ v = 2(0)^2 - 4(0) + 2 \][/tex]
4. Simplify the expression:
[tex]\[ v = 0 - 0 + 2 = 2 \][/tex]
5. Determine the coordinates of the [tex]\( y \)[/tex]-intercept: When [tex]\( x = 0 \)[/tex], [tex]\( v = 2 \)[/tex]. Therefore, the coordinates of the [tex]\( y \)[/tex]-intercept are [tex]\( (0, 2) \)[/tex].
Thus, the statement "The graph of [tex]\( v = 2x^2 - 4x + 2 \)[/tex] has a [tex]\( y \)[/tex]-intercept of [tex]\( (0, 2) \)[/tex]" is:
A. True
1. Identify the general form for a quadratic function: The function given is [tex]\( v = 2x^2 - 4x + 2 \)[/tex].
2. Substitute [tex]\( x = 0 \)[/tex] into the function: To find the [tex]\( y \)[/tex]-intercept, we set [tex]\( x \)[/tex] to [tex]\( 0 \)[/tex] because the [tex]\( y \)[/tex]-intercept is where the graph crosses the [tex]\( y \)[/tex]-axis (which occurs when [tex]\( x = 0 \)[/tex]).
3. Calculate the value of [tex]\( v \)[/tex]:
[tex]\[ v = 2(0)^2 - 4(0) + 2 \][/tex]
4. Simplify the expression:
[tex]\[ v = 0 - 0 + 2 = 2 \][/tex]
5. Determine the coordinates of the [tex]\( y \)[/tex]-intercept: When [tex]\( x = 0 \)[/tex], [tex]\( v = 2 \)[/tex]. Therefore, the coordinates of the [tex]\( y \)[/tex]-intercept are [tex]\( (0, 2) \)[/tex].
Thus, the statement "The graph of [tex]\( v = 2x^2 - 4x + 2 \)[/tex] has a [tex]\( y \)[/tex]-intercept of [tex]\( (0, 2) \)[/tex]" is:
A. True
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.