Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the effect of the number 4 in the function [tex]\( y - 1 = (4x)^2 + 7 \)[/tex] compared to the base function [tex]\( v = x^2 \)[/tex], we need to analyze the transformation steps.
1. Standard Function Comparison:
We start with the standard parabola function [tex]\( v = x^2 \)[/tex].
2. Identify Transformation Form:
The given function is [tex]\( y - 1 = (4x)^2 + 7 \)[/tex]. Let's rearrange it to see the transformation more clearly:
[tex]\[ y - 1 = 16x^2 + 7 \][/tex]
Simplifying this, we get:
[tex]\[ y = 16x^2 + 8 \][/tex]
3. Understand Coefficient Inside the Function:
- In [tex]\( y = v(x) \)[/tex], where [tex]\( v(x) = x^2 \)[/tex], any modification within the argument of the function [tex]\( x \)[/tex] (that is, [tex]\( 4x \)[/tex] in this case) implies a horizontal transformation.
- [tex]\( 4x \)[/tex] indicates that the [tex]\( x \)[/tex] value is being scaled.
4. Horizontal Transformations:
Transformations inside the function's argument, like [tex]\( (4x) \)[/tex], affect the graph horizontally. Specifically:
- If we have [tex]\( f(x) = v(kx) \)[/tex] where [tex]\( k > 1 \)[/tex], it shrinks the graph horizontally by a factor of [tex]\( \frac{1}{k} \)[/tex].
5. Apply the Shrink Factor:
- Here, [tex]\( k = 4 \)[/tex], so [tex]\( (4x) \)[/tex] shrinks the graph horizontally by a factor of [tex]\( \frac{1}{4} \)[/tex].
Thus, the number 4 in [tex]\( (4x)^2 \)[/tex] shrinks the graph horizontally to [tex]\( \frac{1}{4} \)[/tex] the original width of the graph of [tex]\( v = x^2 \)[/tex].
Therefore, the correct answer is:
D. It shrinks the graph horizontally to [tex]\( \frac{1}{4} \)[/tex] the original width.
1. Standard Function Comparison:
We start with the standard parabola function [tex]\( v = x^2 \)[/tex].
2. Identify Transformation Form:
The given function is [tex]\( y - 1 = (4x)^2 + 7 \)[/tex]. Let's rearrange it to see the transformation more clearly:
[tex]\[ y - 1 = 16x^2 + 7 \][/tex]
Simplifying this, we get:
[tex]\[ y = 16x^2 + 8 \][/tex]
3. Understand Coefficient Inside the Function:
- In [tex]\( y = v(x) \)[/tex], where [tex]\( v(x) = x^2 \)[/tex], any modification within the argument of the function [tex]\( x \)[/tex] (that is, [tex]\( 4x \)[/tex] in this case) implies a horizontal transformation.
- [tex]\( 4x \)[/tex] indicates that the [tex]\( x \)[/tex] value is being scaled.
4. Horizontal Transformations:
Transformations inside the function's argument, like [tex]\( (4x) \)[/tex], affect the graph horizontally. Specifically:
- If we have [tex]\( f(x) = v(kx) \)[/tex] where [tex]\( k > 1 \)[/tex], it shrinks the graph horizontally by a factor of [tex]\( \frac{1}{k} \)[/tex].
5. Apply the Shrink Factor:
- Here, [tex]\( k = 4 \)[/tex], so [tex]\( (4x) \)[/tex] shrinks the graph horizontally by a factor of [tex]\( \frac{1}{4} \)[/tex].
Thus, the number 4 in [tex]\( (4x)^2 \)[/tex] shrinks the graph horizontally to [tex]\( \frac{1}{4} \)[/tex] the original width of the graph of [tex]\( v = x^2 \)[/tex].
Therefore, the correct answer is:
D. It shrinks the graph horizontally to [tex]\( \frac{1}{4} \)[/tex] the original width.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.