Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the solutions to the equation [tex]\((x-4)^2 = 81\)[/tex], follow these steps:
1. Rewrite the equation in standard form:
[tex]\[ (x - 4)^2 = 81 \][/tex]
2. Take the square root of both sides:
When we take the square root of both sides of the equation, we must remember that the square root of a number can be both positive and negative. Therefore:
[tex]\[ \sqrt{(x-4)^2} = \pm \sqrt{81} \][/tex]
Simplifying, we have:
[tex]\[ x - 4 = \pm 9 \][/tex]
3. Solve the equation for [tex]\(x\)[/tex] by considering both the positive and negative cases:
- For the positive case:
[tex]\[ x - 4 = 9 \][/tex]
Add 4 to both sides:
[tex]\[ x = 9 + 4 \][/tex]
[tex]\[ x = 13 \][/tex]
- For the negative case:
[tex]\[ x - 4 = -9 \][/tex]
Add 4 to both sides:
[tex]\[ x = -9 + 4 \][/tex]
[tex]\[ x = -5 \][/tex]
4. List the solutions:
The solutions to the equation [tex]\((x-4)^2 = 81\)[/tex] are:
[tex]\[ x = -5 \quad \text{and} \quad x = 13 \][/tex]
Therefore, the correct answer is [tex]\(x = -5\)[/tex] and [tex]\(x = 13\)[/tex]. Thus, the correct choice from the provided options is:
[tex]\[ x = -5 \text{ and } 13 \][/tex]
1. Rewrite the equation in standard form:
[tex]\[ (x - 4)^2 = 81 \][/tex]
2. Take the square root of both sides:
When we take the square root of both sides of the equation, we must remember that the square root of a number can be both positive and negative. Therefore:
[tex]\[ \sqrt{(x-4)^2} = \pm \sqrt{81} \][/tex]
Simplifying, we have:
[tex]\[ x - 4 = \pm 9 \][/tex]
3. Solve the equation for [tex]\(x\)[/tex] by considering both the positive and negative cases:
- For the positive case:
[tex]\[ x - 4 = 9 \][/tex]
Add 4 to both sides:
[tex]\[ x = 9 + 4 \][/tex]
[tex]\[ x = 13 \][/tex]
- For the negative case:
[tex]\[ x - 4 = -9 \][/tex]
Add 4 to both sides:
[tex]\[ x = -9 + 4 \][/tex]
[tex]\[ x = -5 \][/tex]
4. List the solutions:
The solutions to the equation [tex]\((x-4)^2 = 81\)[/tex] are:
[tex]\[ x = -5 \quad \text{and} \quad x = 13 \][/tex]
Therefore, the correct answer is [tex]\(x = -5\)[/tex] and [tex]\(x = 13\)[/tex]. Thus, the correct choice from the provided options is:
[tex]\[ x = -5 \text{ and } 13 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.