Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's solve this step-by-step.
Given:
[tex]\[ x = 3 + b i \][/tex]
[tex]\[ |x|^2 = 13 \][/tex]
Recall that the magnitude squared of a complex number [tex]\(a + bi\)[/tex] is given by:
[tex]\[ |a + bi|^2 = a^2 + b^2 \][/tex]
For our complex number [tex]\(x\)[/tex]:
[tex]\[ |3 + bi|^2 = 3^2 + b^2 \][/tex]
We are given that:
[tex]\[ |x|^2 = 13 \][/tex]
Substituting the values, we get:
[tex]\[ 3^2 + b^2 = 13 \][/tex]
Now, calculate [tex]\(3^2\)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]
Substitute this back into the equation:
[tex]\[ 9 + b^2 = 13 \][/tex]
To isolate [tex]\(b^2\)[/tex], subtract 9 from both sides:
[tex]\[ b^2 = 13 - 9 \][/tex]
[tex]\[ b^2 = 4 \][/tex]
To find [tex]\(b\)[/tex], take the square root of both sides:
[tex]\[ b = \sqrt{4} \][/tex]
[tex]\[ b = 2 \quad \text{or} \quad b = -2 \][/tex]
Therefore, a possible value of [tex]\(b\)[/tex] is [tex]\(2\)[/tex] (since [tex]\(2\)[/tex] is listed in the provided options).
So, the correct answer is:
[tex]\[ \boxed{2} \][/tex]
Given:
[tex]\[ x = 3 + b i \][/tex]
[tex]\[ |x|^2 = 13 \][/tex]
Recall that the magnitude squared of a complex number [tex]\(a + bi\)[/tex] is given by:
[tex]\[ |a + bi|^2 = a^2 + b^2 \][/tex]
For our complex number [tex]\(x\)[/tex]:
[tex]\[ |3 + bi|^2 = 3^2 + b^2 \][/tex]
We are given that:
[tex]\[ |x|^2 = 13 \][/tex]
Substituting the values, we get:
[tex]\[ 3^2 + b^2 = 13 \][/tex]
Now, calculate [tex]\(3^2\)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]
Substitute this back into the equation:
[tex]\[ 9 + b^2 = 13 \][/tex]
To isolate [tex]\(b^2\)[/tex], subtract 9 from both sides:
[tex]\[ b^2 = 13 - 9 \][/tex]
[tex]\[ b^2 = 4 \][/tex]
To find [tex]\(b\)[/tex], take the square root of both sides:
[tex]\[ b = \sqrt{4} \][/tex]
[tex]\[ b = 2 \quad \text{or} \quad b = -2 \][/tex]
Therefore, a possible value of [tex]\(b\)[/tex] is [tex]\(2\)[/tex] (since [tex]\(2\)[/tex] is listed in the provided options).
So, the correct answer is:
[tex]\[ \boxed{2} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.