Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Which equation represents a line that is parallel to the line that passes through the points [tex]$(-6, 9)$[/tex] and [tex]$(7, -17)$[/tex]?

A. [tex]y = 2x + 13[/tex]
B. [tex]y = -2x + 13[/tex]
C. [tex]y = \frac{1}{2}x + 13[/tex]
D. [tex]y = -\frac{1}{2}x + 13[/tex]

Sagot :

To determine which equation represents a line that is parallel to the line passing through the points [tex]\((-6, 9)\)[/tex] and [tex]\((7, -17)\)[/tex], we should follow these steps:

1. Calculate the slope of the line passing through the points [tex]\((-6, 9)\)[/tex] and [tex]\((7, -17)\)[/tex]:
- The formula for the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
- Substituting the given points [tex]\((-6, 9)\)[/tex] and [tex]\((7, -17)\)[/tex]:
[tex]\[ m = \frac{-17 - 9}{7 + 6} = \frac{-26}{13} = -2 \][/tex]
So, the slope of the line passing through the points [tex]\((-6, 9)\)[/tex] and [tex]\((7, -17)\)[/tex] is [tex]\(-2\)[/tex].

2. Identify which of the given equations has the same slope (i.e., [tex]\(-2\)[/tex]):
- The slope-intercept form of a line is [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
- For each option, the slope [tex]\(m\)[/tex] is:
- A. [tex]\(y = 2x + 13\)[/tex] ⇒ slope [tex]\(m = 2\)[/tex]
- B. [tex]\(y = -2x + 13\)[/tex] ⇒ slope [tex]\(m = -2\)[/tex]
- C. [tex]\(y = \frac{1}{2}x + 13\)[/tex] ⇒ slope [tex]\(m = \frac{1}{2}\)[/tex]
- D. [tex]\(y = -\frac{1}{2}x + 13\)[/tex] ⇒ slope [tex]\(m = -\frac{1}{2}\)[/tex]

3. Determine the correct equation:
Since the slope of the line passing through the points [tex]\((-6, 9)\)[/tex] and [tex]\((7, -17)\)[/tex] is [tex]\(-2\)[/tex], the equation that represents a line that is parallel to this line must also have a slope of [tex]\(-2\)[/tex].

Hence, the equation that represents a line parallel to the line passing through the points [tex]\((-6, 9)\)[/tex] and [tex]\((7, -17)\)[/tex] is:
[tex]\[ \boxed{B. \ y = -2x + 13} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.