Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's break this down step-by-step.
### Part (a): Calculating the Expected Value for Each Choice
Choice 1: Passing the Ball
1. We are given the values ([tex]\(x_i\)[/tex]) and their corresponding probabilities ([tex]\(P(x_i)\)[/tex]) for passing the ball:
- [tex]\(x_i = 3\)[/tex], [tex]\(P(x_i) = 0.30\)[/tex]
- [tex]\(x_i = 0\)[/tex], [tex]\(P(x_i) = 0.70\)[/tex]
2. The formula for the expected value [tex]\(E\)[/tex] is given by:
[tex]\[ E = \sum (x_i \cdot P(x_i)) \][/tex]
3. Substituting the given values into the formula, we have:
[tex]\[ E_{\text{passing}} = (3 \cdot 0.30) + (0 \cdot 0.70) \][/tex]
4. Simplifying this:
[tex]\[ E_{\text{passing}} = 0.90 \][/tex]
Choice 2: Taking the Shot
1. We are given the values ([tex]\(x_i\)[/tex]) and their corresponding probabilities ([tex]\(P(x_i)\)[/tex]) for taking the shot:
- [tex]\(x_i = 2\)[/tex], [tex]\(P(x_i) = 0.48\)[/tex]
- [tex]\(x_i = 0\)[/tex], [tex]\(P(x_i) = 0.52\)[/tex]
2. Using the same formula for the expected value [tex]\(E\)[/tex]:
[tex]\[ E_{\text{shooting}} = \sum (x_i \cdot P(x_i)) \][/tex]
3. Substituting the given values into the formula, we have:
[tex]\[ E_{\text{shooting}} = (2 \cdot 0.48) + (0 \cdot 0.52) \][/tex]
4. Simplifying this:
[tex]\[ E_{\text{shooting}} = 0.96 \][/tex]
### Part (b): Decision Making
To determine whether to pass the ball or take the shot, we compare the expected values calculated above:
- Expected value for passing the ball: [tex]\(E_{\text{passing}} = 0.90\)[/tex]
- Expected value for taking the shot: [tex]\(E_{\text{shooting}} = 0.96\)[/tex]
Since the expected value for taking the shot ([tex]\(0.96\)[/tex]) is greater than the expected value for passing the ball ([tex]\(0.90\)[/tex]), the player should take the shot themselves.
### Conclusion
- Expected value for passing the ball: [tex]\(0.90\)[/tex]
- Expected value for taking the shot: [tex]\(0.96\)[/tex]
- Decision: The player should take the shot because the expected value of taking the shot is higher than that of passing the ball.
### Part (a): Calculating the Expected Value for Each Choice
Choice 1: Passing the Ball
1. We are given the values ([tex]\(x_i\)[/tex]) and their corresponding probabilities ([tex]\(P(x_i)\)[/tex]) for passing the ball:
- [tex]\(x_i = 3\)[/tex], [tex]\(P(x_i) = 0.30\)[/tex]
- [tex]\(x_i = 0\)[/tex], [tex]\(P(x_i) = 0.70\)[/tex]
2. The formula for the expected value [tex]\(E\)[/tex] is given by:
[tex]\[ E = \sum (x_i \cdot P(x_i)) \][/tex]
3. Substituting the given values into the formula, we have:
[tex]\[ E_{\text{passing}} = (3 \cdot 0.30) + (0 \cdot 0.70) \][/tex]
4. Simplifying this:
[tex]\[ E_{\text{passing}} = 0.90 \][/tex]
Choice 2: Taking the Shot
1. We are given the values ([tex]\(x_i\)[/tex]) and their corresponding probabilities ([tex]\(P(x_i)\)[/tex]) for taking the shot:
- [tex]\(x_i = 2\)[/tex], [tex]\(P(x_i) = 0.48\)[/tex]
- [tex]\(x_i = 0\)[/tex], [tex]\(P(x_i) = 0.52\)[/tex]
2. Using the same formula for the expected value [tex]\(E\)[/tex]:
[tex]\[ E_{\text{shooting}} = \sum (x_i \cdot P(x_i)) \][/tex]
3. Substituting the given values into the formula, we have:
[tex]\[ E_{\text{shooting}} = (2 \cdot 0.48) + (0 \cdot 0.52) \][/tex]
4. Simplifying this:
[tex]\[ E_{\text{shooting}} = 0.96 \][/tex]
### Part (b): Decision Making
To determine whether to pass the ball or take the shot, we compare the expected values calculated above:
- Expected value for passing the ball: [tex]\(E_{\text{passing}} = 0.90\)[/tex]
- Expected value for taking the shot: [tex]\(E_{\text{shooting}} = 0.96\)[/tex]
Since the expected value for taking the shot ([tex]\(0.96\)[/tex]) is greater than the expected value for passing the ball ([tex]\(0.90\)[/tex]), the player should take the shot themselves.
### Conclusion
- Expected value for passing the ball: [tex]\(0.90\)[/tex]
- Expected value for taking the shot: [tex]\(0.96\)[/tex]
- Decision: The player should take the shot because the expected value of taking the shot is higher than that of passing the ball.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.