Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve for the possible values of [tex]\( k \)[/tex] in the quadratic equation [tex]\( x^2 + kx + 1 = 0 \)[/tex], given that the roots [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex] satisfy [tex]\( \alpha^2 + \beta^2 = 27 \)[/tex], we can follow these steps:
1. Sum and Product of the Roots:
Using Vieta's formulas, for a quadratic equation of the form [tex]\( x^2 + px + q = 0 \)[/tex]:
- The sum of the roots [tex]\( \alpha + \beta \)[/tex] is given by [tex]\( -p \)[/tex], which in our case is [tex]\( -k \)[/tex].
- The product of the roots [tex]\( \alpha \beta \)[/tex] is given by [tex]\( q \)[/tex], which here is [tex]\( 1 \)[/tex].
So, we have:
[tex]\[ \alpha + \beta = -k \][/tex]
[tex]\[ \alpha \beta = 1 \][/tex]
2. Expressing [tex]\( \alpha^2 + \beta^2 \)[/tex]:
Using the identity that relates the sum and product of the roots to the sum of their squares:
[tex]\[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \][/tex]
Substituting the known values:
[tex]\[ \alpha^2 + \beta^2 = (-k)^2 - 2(1) \][/tex]
Simplifying this expression:
[tex]\[ \alpha^2 + \beta^2 = k^2 - 2 \][/tex]
3. Given Condition:
We are given that:
[tex]\[ \alpha^2 + \beta^2 = 27 \][/tex]
Set the equation from step 2 equal to 27:
[tex]\[ k^2 - 2 = 27 \][/tex]
4. Solving for [tex]\( k \)[/tex]:
Isolate [tex]\( k^2 \)[/tex]:
[tex]\[ k^2 - 2 = 27 \][/tex]
[tex]\[ k^2 = 29 \][/tex]
Take the square root of both sides:
[tex]\[ k = \pm \sqrt{29} \][/tex]
Therefore, the possible values of [tex]\( k \)[/tex] are:
[tex]\[ k = \sqrt{29} \quad \text{and} \quad k = -\sqrt{29} \][/tex]
1. Sum and Product of the Roots:
Using Vieta's formulas, for a quadratic equation of the form [tex]\( x^2 + px + q = 0 \)[/tex]:
- The sum of the roots [tex]\( \alpha + \beta \)[/tex] is given by [tex]\( -p \)[/tex], which in our case is [tex]\( -k \)[/tex].
- The product of the roots [tex]\( \alpha \beta \)[/tex] is given by [tex]\( q \)[/tex], which here is [tex]\( 1 \)[/tex].
So, we have:
[tex]\[ \alpha + \beta = -k \][/tex]
[tex]\[ \alpha \beta = 1 \][/tex]
2. Expressing [tex]\( \alpha^2 + \beta^2 \)[/tex]:
Using the identity that relates the sum and product of the roots to the sum of their squares:
[tex]\[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \][/tex]
Substituting the known values:
[tex]\[ \alpha^2 + \beta^2 = (-k)^2 - 2(1) \][/tex]
Simplifying this expression:
[tex]\[ \alpha^2 + \beta^2 = k^2 - 2 \][/tex]
3. Given Condition:
We are given that:
[tex]\[ \alpha^2 + \beta^2 = 27 \][/tex]
Set the equation from step 2 equal to 27:
[tex]\[ k^2 - 2 = 27 \][/tex]
4. Solving for [tex]\( k \)[/tex]:
Isolate [tex]\( k^2 \)[/tex]:
[tex]\[ k^2 - 2 = 27 \][/tex]
[tex]\[ k^2 = 29 \][/tex]
Take the square root of both sides:
[tex]\[ k = \pm \sqrt{29} \][/tex]
Therefore, the possible values of [tex]\( k \)[/tex] are:
[tex]\[ k = \sqrt{29} \quad \text{and} \quad k = -\sqrt{29} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.