Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the nature of the roots for the quadratic equation [tex]\(2x^2 + 5x - 7 = 0\)[/tex], we need to evaluate the discriminant of the equation. The discriminant ([tex]\(\Delta\)[/tex]) for a quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For the equation [tex]\(2x^2 + 5x - 7 = 0\)[/tex]:
- The coefficient [tex]\(a\)[/tex] is 2,
- The coefficient [tex]\(b\)[/tex] is 5,
- The constant term [tex]\(c\)[/tex] is -7.
Substituting these values into the discriminant formula:
[tex]\[ \Delta = 5^2 - 4 \cdot 2 \cdot (-7) \][/tex]
Calculating this step by step:
1. [tex]\(5^2 = 25\)[/tex]
2. [tex]\(4 \cdot 2 = 8\)[/tex]
3. [tex]\(8 \cdot (-7) = -56\)[/tex]
4. Therefore, [tex]\(\Delta = 25 - (-56) = 25 + 56 = 81\)[/tex]
The discriminant [tex]\(\Delta\)[/tex] is 81.
Next, we interpret the value of the discriminant:
- If [tex]\(\Delta > 0\)[/tex], the equation has two distinct real roots.
- If [tex]\(\Delta = 0\)[/tex], the equation has exactly one real double root.
- If [tex]\(\Delta < 0\)[/tex], the equation has two non-real (complex) roots.
Since [tex]\(\Delta = 81\)[/tex] and [tex]\(81 > 0\)[/tex], we have two distinct real roots. To further classify these real roots as rational or irrational, we check if the discriminant is a perfect square:
- The square root of 81 is 9, which is an integer. Therefore, the discriminant is a perfect square.
Thus, the quadratic equation [tex]\(2x^2 + 5x - 7 = 0\)[/tex] has two real, rational roots.
The correct answer is:
A. Two real, rational roots
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For the equation [tex]\(2x^2 + 5x - 7 = 0\)[/tex]:
- The coefficient [tex]\(a\)[/tex] is 2,
- The coefficient [tex]\(b\)[/tex] is 5,
- The constant term [tex]\(c\)[/tex] is -7.
Substituting these values into the discriminant formula:
[tex]\[ \Delta = 5^2 - 4 \cdot 2 \cdot (-7) \][/tex]
Calculating this step by step:
1. [tex]\(5^2 = 25\)[/tex]
2. [tex]\(4 \cdot 2 = 8\)[/tex]
3. [tex]\(8 \cdot (-7) = -56\)[/tex]
4. Therefore, [tex]\(\Delta = 25 - (-56) = 25 + 56 = 81\)[/tex]
The discriminant [tex]\(\Delta\)[/tex] is 81.
Next, we interpret the value of the discriminant:
- If [tex]\(\Delta > 0\)[/tex], the equation has two distinct real roots.
- If [tex]\(\Delta = 0\)[/tex], the equation has exactly one real double root.
- If [tex]\(\Delta < 0\)[/tex], the equation has two non-real (complex) roots.
Since [tex]\(\Delta = 81\)[/tex] and [tex]\(81 > 0\)[/tex], we have two distinct real roots. To further classify these real roots as rational or irrational, we check if the discriminant is a perfect square:
- The square root of 81 is 9, which is an integer. Therefore, the discriminant is a perfect square.
Thus, the quadratic equation [tex]\(2x^2 + 5x - 7 = 0\)[/tex] has two real, rational roots.
The correct answer is:
A. Two real, rational roots
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.