Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To construct a [tex]\(99 \%\)[/tex] confidence interval estimate of the mean body temperature of all healthy humans, we follow these steps:
1. Gather Given Data:
- Mean ([tex]\(\bar{x}\)[/tex]) of the sample: [tex]\(98.0^{\circ} F\)[/tex]
- Standard deviation ([tex]\(\sigma\)[/tex]) of the sample: [tex]\(0.74^{\circ} F\)[/tex]
- Sample size ([tex]\(n\)[/tex]): 110
- Confidence level: [tex]\(99 \%\)[/tex]
2. Calculate the Standard Error of the Mean:
Standard Error (SE) is given by:
[tex]\[ SE = \frac{\sigma}{\sqrt{n}} \][/tex]
Substituting the given values:
[tex]\[ SE = \frac{0.74}{\sqrt{110}} \approx 0.0704 \][/tex]
3. Determine the Z-Score for a 99% Confidence Level:
A 99% confidence level corresponds to [tex]\( \alpha = 0.01 \)[/tex], and we split this into two tails, so each tail has an area of [tex]\( \frac{\alpha}{2} = 0.005 \)[/tex]. We need to find the Z-score that leaves [tex]\(0.005\)[/tex] in the tail (which corresponds to [tex]\(99.5\% \)[/tex] in the cumulative distribution).
Using the standard normal distribution table, the Z-score for [tex]\(99.5\%\)[/tex] is approximately [tex]\(2.576\)[/tex].
4. Calculate the Margin of Error:
The Margin of Error (ME) is given by:
[tex]\[ ME = Z \times SE \][/tex]
Substituting the values:
[tex]\[ ME = 2.576 \times 0.0704 \approx 0.1817 \][/tex]
5. Calculate the Confidence Interval:
The confidence interval is given by:
[tex]\[ \text{Lower bound} = \bar{x} - ME = 98.0 - 0.1817 \approx 97.818 \][/tex]
[tex]\[ \text{Upper bound} = \bar{x} + ME = 98.0 + 0.1817 \approx 98.182 \][/tex]
Therefore, the 99% confidence interval estimate of the population mean [tex]\(\mu\)[/tex] is:
[tex]\[ (97.818^{\circ} F, 98.182^{\circ} F) \][/tex]
### Conclusion About the Use of [tex]\(98.6^{\circ} F\)[/tex]:
This sample suggests that the commonly accepted mean body temperature of [tex]\(98.6^{\circ} F\)[/tex] might be an overestimate since the [tex]\(99\%\)[/tex] confidence interval [tex]\((97.818^{\circ} F, 98.182^{\circ} F)\)[/tex] does not include [tex]\(98.6^{\circ} F\)[/tex]. This indicates that the true mean body temperature for healthy adults is likely lower than [tex]\(98.6^{\circ} F\)[/tex].
1. Gather Given Data:
- Mean ([tex]\(\bar{x}\)[/tex]) of the sample: [tex]\(98.0^{\circ} F\)[/tex]
- Standard deviation ([tex]\(\sigma\)[/tex]) of the sample: [tex]\(0.74^{\circ} F\)[/tex]
- Sample size ([tex]\(n\)[/tex]): 110
- Confidence level: [tex]\(99 \%\)[/tex]
2. Calculate the Standard Error of the Mean:
Standard Error (SE) is given by:
[tex]\[ SE = \frac{\sigma}{\sqrt{n}} \][/tex]
Substituting the given values:
[tex]\[ SE = \frac{0.74}{\sqrt{110}} \approx 0.0704 \][/tex]
3. Determine the Z-Score for a 99% Confidence Level:
A 99% confidence level corresponds to [tex]\( \alpha = 0.01 \)[/tex], and we split this into two tails, so each tail has an area of [tex]\( \frac{\alpha}{2} = 0.005 \)[/tex]. We need to find the Z-score that leaves [tex]\(0.005\)[/tex] in the tail (which corresponds to [tex]\(99.5\% \)[/tex] in the cumulative distribution).
Using the standard normal distribution table, the Z-score for [tex]\(99.5\%\)[/tex] is approximately [tex]\(2.576\)[/tex].
4. Calculate the Margin of Error:
The Margin of Error (ME) is given by:
[tex]\[ ME = Z \times SE \][/tex]
Substituting the values:
[tex]\[ ME = 2.576 \times 0.0704 \approx 0.1817 \][/tex]
5. Calculate the Confidence Interval:
The confidence interval is given by:
[tex]\[ \text{Lower bound} = \bar{x} - ME = 98.0 - 0.1817 \approx 97.818 \][/tex]
[tex]\[ \text{Upper bound} = \bar{x} + ME = 98.0 + 0.1817 \approx 98.182 \][/tex]
Therefore, the 99% confidence interval estimate of the population mean [tex]\(\mu\)[/tex] is:
[tex]\[ (97.818^{\circ} F, 98.182^{\circ} F) \][/tex]
### Conclusion About the Use of [tex]\(98.6^{\circ} F\)[/tex]:
This sample suggests that the commonly accepted mean body temperature of [tex]\(98.6^{\circ} F\)[/tex] might be an overestimate since the [tex]\(99\%\)[/tex] confidence interval [tex]\((97.818^{\circ} F, 98.182^{\circ} F)\)[/tex] does not include [tex]\(98.6^{\circ} F\)[/tex]. This indicates that the true mean body temperature for healthy adults is likely lower than [tex]\(98.6^{\circ} F\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.