Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the set [tex]\( A_1 \)[/tex] defined as [tex]\( A_1=\left\{x: x^2+7x+12=0, x \in \mathbb{Z} \right\} \)[/tex], we need to solve the quadratic equation [tex]\( x^2 + 7x + 12 = 0 \)[/tex] for integer values of [tex]\( x \)[/tex].
Let's solve this step-by-step:
1. Write down the quadratic equation:
[tex]\[ x^2 + 7x + 12 = 0 \][/tex]
2. Factor the quadratic equation:
We need to find two numbers that multiply to [tex]\( 12 \)[/tex] (the constant term) and add up to [tex]\( 7 \)[/tex] (the coefficient of the [tex]\( x \)[/tex]-term). These numbers are [tex]\( 3 \)[/tex] and [tex]\( 4 \)[/tex] because:
[tex]\[ 3 \cdot 4 = 12 \quad \text{and} \quad 3 + 4 = 7 \][/tex]
Hence, we can factor the quadratic equation as:
[tex]\[ (x + 3)(x + 4) = 0 \][/tex]
3. Solve the factored equation by setting each factor equal to zero:
[tex]\[ (x + 3) = 0 \quad \text{or} \quad (x + 4) = 0 \][/tex]
Solving these, we get:
[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]
[tex]\[ x + 4 = 0 \implies x = -4 \][/tex]
4. Collect the integer solutions:
The integer solutions to the equation [tex]\( x^2 + 7x + 12 = 0 \)[/tex] are [tex]\( x = -3 \)[/tex] and [tex]\( x = -4 \)[/tex].
5. Form the set [tex]\( A_1 \)[/tex]:
[tex]\[ A_1 = \left\{ x : x^2 + 7x + 12 = 0, x \in \mathbb{Z} \right\} = \{ -3, -4 \} \][/tex]
Therefore, the set [tex]\( A_1 \)[/tex] is:
[tex]\[ A_1 = \{ -3, -4 \} \][/tex]
Let's solve this step-by-step:
1. Write down the quadratic equation:
[tex]\[ x^2 + 7x + 12 = 0 \][/tex]
2. Factor the quadratic equation:
We need to find two numbers that multiply to [tex]\( 12 \)[/tex] (the constant term) and add up to [tex]\( 7 \)[/tex] (the coefficient of the [tex]\( x \)[/tex]-term). These numbers are [tex]\( 3 \)[/tex] and [tex]\( 4 \)[/tex] because:
[tex]\[ 3 \cdot 4 = 12 \quad \text{and} \quad 3 + 4 = 7 \][/tex]
Hence, we can factor the quadratic equation as:
[tex]\[ (x + 3)(x + 4) = 0 \][/tex]
3. Solve the factored equation by setting each factor equal to zero:
[tex]\[ (x + 3) = 0 \quad \text{or} \quad (x + 4) = 0 \][/tex]
Solving these, we get:
[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]
[tex]\[ x + 4 = 0 \implies x = -4 \][/tex]
4. Collect the integer solutions:
The integer solutions to the equation [tex]\( x^2 + 7x + 12 = 0 \)[/tex] are [tex]\( x = -3 \)[/tex] and [tex]\( x = -4 \)[/tex].
5. Form the set [tex]\( A_1 \)[/tex]:
[tex]\[ A_1 = \left\{ x : x^2 + 7x + 12 = 0, x \in \mathbb{Z} \right\} = \{ -3, -4 \} \][/tex]
Therefore, the set [tex]\( A_1 \)[/tex] is:
[tex]\[ A_1 = \{ -3, -4 \} \][/tex]
Answer:
Step-by-step explanation:To find the elements of the set \( A_1 \), we need to solve the quadratic equation \( x^2 + 7x + 12 = 0 \) for \( x \) in the set of integers \( \mathbb{Z} \).
First, we solve the quadratic equation using the factorization method. We look for two numbers that multiply to \( 12 \) (the constant term) and add up to \( 7 \) (the coefficient of \( x \)).
The quadratic equation is:
\[ x^2 + 7x + 12 = 0 \]
We can factorize this equation as:
\[ (x + 3)(x + 4) = 0 \]
Now, we solve for \( x \) by setting each factor equal to zero:
\[ x + 3 = 0 \quad \text{or} \quad x + 4 = 0 \]
\[ x = -3 \quad \text{or} \quad x = -4 \]
Therefore, the elements of the set \( A_1 \) are \( -3 \) and \( -4 \).
Thus,
\[ A_1 = \{ -3, -4 \} \]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.