Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine what value [tex]\( h \)[/tex] must take for the equation [tex]\( h(-x + 5) = -8x + 40 \)[/tex] to have one solution, we can follow these steps:
1. Examine the Structure of the Equation:
The given equation is:
[tex]\[ h(-x + 5) = -8x + 40 \][/tex]
2. Distribute [tex]\( h \)[/tex] on the left side of the equation:
[tex]\[ h(-x + 5) = h(-x) + h(5) \][/tex]
Simplifying further:
[tex]\[ = -hx + 5h \][/tex]
3. Set the distributed form equal to the right side of the equation:
[tex]\[ -hx + 5h = -8x + 40 \][/tex]
4. Equate Coefficients of Like Terms:
For the equation to have one solution, the coefficients of [tex]\( x \)[/tex] and the constant terms on both sides must match.
- Compare the coefficients of [tex]\( x \)[/tex]:
[tex]\[ -h = -8 \][/tex]
Solving for [tex]\( h \)[/tex]:
[tex]\[ h = 8 \][/tex]
- Check the constant terms:
[tex]\[ 5h = 40 \][/tex]
Substituting [tex]\( h = 8 \)[/tex] into [tex]\( 5h \)[/tex]:
[tex]\[ 5 \times 8 = 40 \][/tex]
This confirms the constant terms are also equal.
Hence, the equation will have one solution when [tex]\( h \)[/tex] equals 8 because you get the same number of [tex]\( x \)[/tex] terms on either side of the equation and the constant terms also correctly align.
1. Examine the Structure of the Equation:
The given equation is:
[tex]\[ h(-x + 5) = -8x + 40 \][/tex]
2. Distribute [tex]\( h \)[/tex] on the left side of the equation:
[tex]\[ h(-x + 5) = h(-x) + h(5) \][/tex]
Simplifying further:
[tex]\[ = -hx + 5h \][/tex]
3. Set the distributed form equal to the right side of the equation:
[tex]\[ -hx + 5h = -8x + 40 \][/tex]
4. Equate Coefficients of Like Terms:
For the equation to have one solution, the coefficients of [tex]\( x \)[/tex] and the constant terms on both sides must match.
- Compare the coefficients of [tex]\( x \)[/tex]:
[tex]\[ -h = -8 \][/tex]
Solving for [tex]\( h \)[/tex]:
[tex]\[ h = 8 \][/tex]
- Check the constant terms:
[tex]\[ 5h = 40 \][/tex]
Substituting [tex]\( h = 8 \)[/tex] into [tex]\( 5h \)[/tex]:
[tex]\[ 5 \times 8 = 40 \][/tex]
This confirms the constant terms are also equal.
Hence, the equation will have one solution when [tex]\( h \)[/tex] equals 8 because you get the same number of [tex]\( x \)[/tex] terms on either side of the equation and the constant terms also correctly align.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.