Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's define the variables in the binomial probability formula related to the given statement:
1. Total Number of Trials (n):
The number of trials represents the total number of coin flips. In this case, we are flipping a coin 10 times.
[tex]\[ n = 10 \][/tex]
2. Probability of Success on a Single Trial (p):
The probability of success in this context is the probability of flipping a "head" on a single trial. Given a fair coin, the probability of getting heads is 0.5.
[tex]\[ p = 0.5 \][/tex]
3. Number of Successes (k):
The number of successes represents the specific number of "heads" we are interested in. Here, we are interested in getting exactly 5 heads out of the 10 flips.
[tex]\[ k = 5 \][/tex]
4. Binomial Probability (P):
We are interested in the probability of getting exactly 5 heads (successes) out of 10 coin flips (trials) with the probability of a single trial being heads at 0.5. This probability can be evaluated using a binomial distribution function.
The result given is:
[tex]\[ \text{Binomial Probability} = 0.24609375000000003 \][/tex]
So to summarize:
[tex]\[ n = 10, \quad p = 0.5, \quad k = 5, \quad \text{Probability} = 0.24609375000000003 \][/tex]
This means the probability of getting exactly 5 heads in 10 coin flips is 0.24609375000000003.
1. Total Number of Trials (n):
The number of trials represents the total number of coin flips. In this case, we are flipping a coin 10 times.
[tex]\[ n = 10 \][/tex]
2. Probability of Success on a Single Trial (p):
The probability of success in this context is the probability of flipping a "head" on a single trial. Given a fair coin, the probability of getting heads is 0.5.
[tex]\[ p = 0.5 \][/tex]
3. Number of Successes (k):
The number of successes represents the specific number of "heads" we are interested in. Here, we are interested in getting exactly 5 heads out of the 10 flips.
[tex]\[ k = 5 \][/tex]
4. Binomial Probability (P):
We are interested in the probability of getting exactly 5 heads (successes) out of 10 coin flips (trials) with the probability of a single trial being heads at 0.5. This probability can be evaluated using a binomial distribution function.
The result given is:
[tex]\[ \text{Binomial Probability} = 0.24609375000000003 \][/tex]
So to summarize:
[tex]\[ n = 10, \quad p = 0.5, \quad k = 5, \quad \text{Probability} = 0.24609375000000003 \][/tex]
This means the probability of getting exactly 5 heads in 10 coin flips is 0.24609375000000003.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.