Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's define the variables in the binomial probability formula related to the given statement:
1. Total Number of Trials (n):
The number of trials represents the total number of coin flips. In this case, we are flipping a coin 10 times.
[tex]\[ n = 10 \][/tex]
2. Probability of Success on a Single Trial (p):
The probability of success in this context is the probability of flipping a "head" on a single trial. Given a fair coin, the probability of getting heads is 0.5.
[tex]\[ p = 0.5 \][/tex]
3. Number of Successes (k):
The number of successes represents the specific number of "heads" we are interested in. Here, we are interested in getting exactly 5 heads out of the 10 flips.
[tex]\[ k = 5 \][/tex]
4. Binomial Probability (P):
We are interested in the probability of getting exactly 5 heads (successes) out of 10 coin flips (trials) with the probability of a single trial being heads at 0.5. This probability can be evaluated using a binomial distribution function.
The result given is:
[tex]\[ \text{Binomial Probability} = 0.24609375000000003 \][/tex]
So to summarize:
[tex]\[ n = 10, \quad p = 0.5, \quad k = 5, \quad \text{Probability} = 0.24609375000000003 \][/tex]
This means the probability of getting exactly 5 heads in 10 coin flips is 0.24609375000000003.
1. Total Number of Trials (n):
The number of trials represents the total number of coin flips. In this case, we are flipping a coin 10 times.
[tex]\[ n = 10 \][/tex]
2. Probability of Success on a Single Trial (p):
The probability of success in this context is the probability of flipping a "head" on a single trial. Given a fair coin, the probability of getting heads is 0.5.
[tex]\[ p = 0.5 \][/tex]
3. Number of Successes (k):
The number of successes represents the specific number of "heads" we are interested in. Here, we are interested in getting exactly 5 heads out of the 10 flips.
[tex]\[ k = 5 \][/tex]
4. Binomial Probability (P):
We are interested in the probability of getting exactly 5 heads (successes) out of 10 coin flips (trials) with the probability of a single trial being heads at 0.5. This probability can be evaluated using a binomial distribution function.
The result given is:
[tex]\[ \text{Binomial Probability} = 0.24609375000000003 \][/tex]
So to summarize:
[tex]\[ n = 10, \quad p = 0.5, \quad k = 5, \quad \text{Probability} = 0.24609375000000003 \][/tex]
This means the probability of getting exactly 5 heads in 10 coin flips is 0.24609375000000003.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.