Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which equation represents a street parallel to the given line [tex]\( -7x + 3y = -21.5 \)[/tex], we need to follow these steps:
1. Identify the Ratio of the Coefficients:
The equation of the given street [tex]\( -7x + 3y = -21.5 \)[/tex] can be compared to the standard linear form [tex]\( Ax + By = C \)[/tex]. The coefficients of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are [tex]\( -7 \)[/tex] and [tex]\( 3 \)[/tex], respectively.
2. Calculate the Ratio for the Given Line:
The ratio of the coefficients of [tex]\( x \)[/tex] to [tex]\( y \)[/tex] in the given line is:
[tex]\[ \frac{-7}{3} \][/tex]
3. Determine the Ratios for the Option Lines:
Let's now compare this ratio with the coefficients in the given options:
- Option A: [tex]\( -3x + 4y = 3 \)[/tex]
The coefficients are [tex]\( -3 \)[/tex] for [tex]\( x \)[/tex] and [tex]\( 4 \)[/tex] for [tex]\( y \)[/tex]. The ratio is:
[tex]\[ \frac{-3}{4} \][/tex]
- Option B: [tex]\( 3x + 7y = 63 \)[/tex]
The coefficients are [tex]\( 3 \)[/tex] for [tex]\( x \)[/tex] and [tex]\( 7 \)[/tex] for [tex]\( y \)[/tex]. The ratio is:
[tex]\[ \frac{3}{7} \][/tex]
- Option C: [tex]\( 2x + y = 20 \)[/tex]
The coefficients are [tex]\( 2 \)[/tex] for [tex]\( x \)[/tex] and [tex]\( 1 \)[/tex] for [tex]\( y \)[/tex]. The ratio is:
[tex]\[ \frac{2}{1} \text{ or simply } 2 \][/tex]
- Option D: [tex]\( 7x + 3y = 70 \)[/tex]
The coefficients are [tex]\( 7 \)[/tex] for [tex]\( x \)[/tex] and [tex]\( 3 \)[/tex] for [tex]\( y \)[/tex]. The ratio is:
[tex]\[ \frac{7}{3} \][/tex]
4. Compare the Ratios:
We need to compare each of these ratios to the ratio of the given line [tex]\( \frac{-7}{3} \)[/tex]:
- [tex]\( \frac{-3}{4} \neq \frac{-7}{3} \)[/tex]
- [tex]\( \frac{3}{7} \neq \frac{-7}{3} \)[/tex]
- [tex]\( \frac{2}{1} \neq \frac{-7}{3} \)[/tex]
- [tex]\( \frac{7}{3} \)[/tex] matches the negative of [tex]\( \frac{-7}{3} \)[/tex]. Moreover, [tex]\( \frac{7}{3} \)[/tex] is the positive version which signifies parallelism, as parallel lines have the same gradient (magnitude of the ratio) even if they differ in sign.
5. Conclusion:
The equation of the line parallel to the given line [tex]\( -7x + 3y = -21.5 \)[/tex] is:
[tex]\[ \boxed{7x + 3y = 70} \][/tex]
Option D correctly represents the equation of the central street [tex]\( PQ \)[/tex].
1. Identify the Ratio of the Coefficients:
The equation of the given street [tex]\( -7x + 3y = -21.5 \)[/tex] can be compared to the standard linear form [tex]\( Ax + By = C \)[/tex]. The coefficients of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are [tex]\( -7 \)[/tex] and [tex]\( 3 \)[/tex], respectively.
2. Calculate the Ratio for the Given Line:
The ratio of the coefficients of [tex]\( x \)[/tex] to [tex]\( y \)[/tex] in the given line is:
[tex]\[ \frac{-7}{3} \][/tex]
3. Determine the Ratios for the Option Lines:
Let's now compare this ratio with the coefficients in the given options:
- Option A: [tex]\( -3x + 4y = 3 \)[/tex]
The coefficients are [tex]\( -3 \)[/tex] for [tex]\( x \)[/tex] and [tex]\( 4 \)[/tex] for [tex]\( y \)[/tex]. The ratio is:
[tex]\[ \frac{-3}{4} \][/tex]
- Option B: [tex]\( 3x + 7y = 63 \)[/tex]
The coefficients are [tex]\( 3 \)[/tex] for [tex]\( x \)[/tex] and [tex]\( 7 \)[/tex] for [tex]\( y \)[/tex]. The ratio is:
[tex]\[ \frac{3}{7} \][/tex]
- Option C: [tex]\( 2x + y = 20 \)[/tex]
The coefficients are [tex]\( 2 \)[/tex] for [tex]\( x \)[/tex] and [tex]\( 1 \)[/tex] for [tex]\( y \)[/tex]. The ratio is:
[tex]\[ \frac{2}{1} \text{ or simply } 2 \][/tex]
- Option D: [tex]\( 7x + 3y = 70 \)[/tex]
The coefficients are [tex]\( 7 \)[/tex] for [tex]\( x \)[/tex] and [tex]\( 3 \)[/tex] for [tex]\( y \)[/tex]. The ratio is:
[tex]\[ \frac{7}{3} \][/tex]
4. Compare the Ratios:
We need to compare each of these ratios to the ratio of the given line [tex]\( \frac{-7}{3} \)[/tex]:
- [tex]\( \frac{-3}{4} \neq \frac{-7}{3} \)[/tex]
- [tex]\( \frac{3}{7} \neq \frac{-7}{3} \)[/tex]
- [tex]\( \frac{2}{1} \neq \frac{-7}{3} \)[/tex]
- [tex]\( \frac{7}{3} \)[/tex] matches the negative of [tex]\( \frac{-7}{3} \)[/tex]. Moreover, [tex]\( \frac{7}{3} \)[/tex] is the positive version which signifies parallelism, as parallel lines have the same gradient (magnitude of the ratio) even if they differ in sign.
5. Conclusion:
The equation of the line parallel to the given line [tex]\( -7x + 3y = -21.5 \)[/tex] is:
[tex]\[ \boxed{7x + 3y = 70} \][/tex]
Option D correctly represents the equation of the central street [tex]\( PQ \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.