At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve for the equation of the line parallel to the given equation and passing through the point [tex]\((-2, 5)\)[/tex]:
1. Determine the slope of the given line.
We start with the given equation [tex]\(3x + 2y = 8\)[/tex]. To convert this into slope-intercept form ([tex]\(y = mx + b\)[/tex]):
[tex]\[ 2y = -3x + 8 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 4 \][/tex]
From this, we see that the slope [tex]\(m\)[/tex] of the given line is [tex]\(-\frac{3}{2}\)[/tex].
2. Determine the slope of the parallel line.
Since parallel lines have the same slope, the slope of the line parallel to the given line is also [tex]\(-\frac{3}{2}\)[/tex].
3. Use the point-slope form to find the equation of the new line.
The line must pass through the point [tex]\((-2, 5)\)[/tex]. Using the point-slope form:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substituting [tex]\(m = -\frac{3}{2}\)[/tex], [tex]\(x_1 = -2\)[/tex], and [tex]\(y_1 = 5\)[/tex]:
[tex]\[ y - 5 = -\frac{3}{2}(x + 2) \][/tex]
4. Simplify to slope-intercept form.
Distribute and simplify:
[tex]\[ y - 5 = -\frac{3}{2}x - 3 \][/tex]
[tex]\[ y = -\frac{3}{2}x - 3 + 5 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]
So, the equation [tex]\(y = -\frac{3}{2}x + 2\)[/tex] represents the line parallel to the given equation and passing through the point [tex]\((-2, 5)\)[/tex].
Therefore, the correct entries in the drop-down menus are:
- [tex]\( -\frac{3}{2} \)[/tex]
- [tex]\( 2 \)[/tex]
1. Determine the slope of the given line.
We start with the given equation [tex]\(3x + 2y = 8\)[/tex]. To convert this into slope-intercept form ([tex]\(y = mx + b\)[/tex]):
[tex]\[ 2y = -3x + 8 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 4 \][/tex]
From this, we see that the slope [tex]\(m\)[/tex] of the given line is [tex]\(-\frac{3}{2}\)[/tex].
2. Determine the slope of the parallel line.
Since parallel lines have the same slope, the slope of the line parallel to the given line is also [tex]\(-\frac{3}{2}\)[/tex].
3. Use the point-slope form to find the equation of the new line.
The line must pass through the point [tex]\((-2, 5)\)[/tex]. Using the point-slope form:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substituting [tex]\(m = -\frac{3}{2}\)[/tex], [tex]\(x_1 = -2\)[/tex], and [tex]\(y_1 = 5\)[/tex]:
[tex]\[ y - 5 = -\frac{3}{2}(x + 2) \][/tex]
4. Simplify to slope-intercept form.
Distribute and simplify:
[tex]\[ y - 5 = -\frac{3}{2}x - 3 \][/tex]
[tex]\[ y = -\frac{3}{2}x - 3 + 5 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]
So, the equation [tex]\(y = -\frac{3}{2}x + 2\)[/tex] represents the line parallel to the given equation and passing through the point [tex]\((-2, 5)\)[/tex].
Therefore, the correct entries in the drop-down menus are:
- [tex]\( -\frac{3}{2} \)[/tex]
- [tex]\( 2 \)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.