At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Select the correct answer from each drop-down menu.

Consider the given equation:

[tex]\[ 3x + 2y = 8 \][/tex]

The equation [tex]\( y = \square x + \square \)[/tex] represents the line parallel to the given equation and passes through the point [tex]\((-2, 5)\)[/tex].

Sagot :

To solve for the equation of the line parallel to the given equation and passing through the point [tex]\((-2, 5)\)[/tex]:

1. Determine the slope of the given line.

We start with the given equation [tex]\(3x + 2y = 8\)[/tex]. To convert this into slope-intercept form ([tex]\(y = mx + b\)[/tex]):
[tex]\[ 2y = -3x + 8 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 4 \][/tex]
From this, we see that the slope [tex]\(m\)[/tex] of the given line is [tex]\(-\frac{3}{2}\)[/tex].

2. Determine the slope of the parallel line.

Since parallel lines have the same slope, the slope of the line parallel to the given line is also [tex]\(-\frac{3}{2}\)[/tex].

3. Use the point-slope form to find the equation of the new line.

The line must pass through the point [tex]\((-2, 5)\)[/tex]. Using the point-slope form:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substituting [tex]\(m = -\frac{3}{2}\)[/tex], [tex]\(x_1 = -2\)[/tex], and [tex]\(y_1 = 5\)[/tex]:
[tex]\[ y - 5 = -\frac{3}{2}(x + 2) \][/tex]

4. Simplify to slope-intercept form.

Distribute and simplify:
[tex]\[ y - 5 = -\frac{3}{2}x - 3 \][/tex]
[tex]\[ y = -\frac{3}{2}x - 3 + 5 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]

So, the equation [tex]\(y = -\frac{3}{2}x + 2\)[/tex] represents the line parallel to the given equation and passing through the point [tex]\((-2, 5)\)[/tex].

Therefore, the correct entries in the drop-down menus are:
- [tex]\( -\frac{3}{2} \)[/tex]
- [tex]\( 2 \)[/tex]