Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's go through each part of the question step-by-step to find the concentration of hydronium ions, [tex]\( \text{H}_3\text{O}^+ \)[/tex], in different scenarios.
### Part a: Given [tex]\([ \text{OH}^- ] = 5 \times 10^{-5} \text{ M}\)[/tex]
We use the ion-product constant for water at 25 degrees Celsius:
[tex]\[ K_w = [\text{H}_3\text{O}^+][\text{OH}^-] = 1 \times 10^{-14} \][/tex]
We can find the concentration of [tex]\(\text{H}_3\text{O}^+\)[/tex] using the given [tex]\([ \text{OH}^- ]\)[/tex]:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{K_w}{[ \text{OH}^- ]} \][/tex]
Substitute the values:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{1 \times 10^{-14}}{5 \times 10^{-5}} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 2 \times 10^{-10} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 2 \times 10^{-10} \text{ M} \)[/tex].
### Part c: Given [tex]\(0.05 \text{ M Sr(OH)}_2\)[/tex]
Strontium hydroxide, [tex]\( \text{Sr(OH)}_2 \)[/tex], dissociates completely in water and provides 2 hydroxide ions ([tex]\( \text{OH}^- \)[/tex]) per formula unit:
[tex]\[ \text{Sr(OH)}_2 \rightarrow \text{Sr}^{2+} + 2\text{OH}^- \][/tex]
Therefore, the concentration of hydroxide ions is:
[tex]\[ [ \text{OH}^- ] = 2 \times 0.05 \text{ M} = 0.10 \text{ M} \][/tex]
Now, we use the ion-product constant for water:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{K_w}{[ \text{OH}^- ]} \][/tex]
Substitute the values:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{1 \times 10^{-14}}{0.10} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 1 \times 10^{-13} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 1 \times 10^{-13} \text{ M} \)[/tex].
### Part b: Given [tex]\([ \text{OH}^- ] = 100 [ \text{H}_3\text{O}^+ ]\)[/tex]
This gives us a relationship between [tex]\([ \text{OH}^- ]\)[/tex] and [tex]\([ \text{H}_3\text{O}^+ ]\)[/tex]:
[tex]\[ [ \text{OH}^- ] = 100 [ \text{H}_3\text{O}^+ ] \][/tex]
We use the ion-product constant for water:
[tex]\[ K_w = [\text{H}_3\text{O}^+][\text{OH}^-] \][/tex]
Using the given relationship:
[tex]\[ K_w = [\text{H}_3\text{O}^+] \cdot 100 [ \text{H}_3\text{O}^+ ] \][/tex]
[tex]\[ K_w = 100 [\text{H}_3\text{O}^+]^2 \][/tex]
Solving for [tex]\([ \text{H}_3\text{O}^+] \)[/tex]:
[tex]\[ [\text{H}_3\text{O}^+]^2 = \frac{K_w}{100} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = \sqrt{\frac{1 \times 10^{-14}}{100}} = \sqrt{1 \times 10^{-16}} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 1 \times 10^{-8} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 1 \times 10^{-8} \text{ M} \)[/tex].
### Part d: Given [tex]\(0.01 \text{ M H}_2\text{SO}_4\)[/tex]
Sulfuric acid, [tex]\( \text{H}_2\text{SO}_4 \)[/tex], is a strong acid that dissociates completely in water and provides 2 hydronium ions ([tex]\( \text{H}_3\text{O}^+ \)[/tex]) per formula unit:
[tex]\[ \text{H}_2\text{SO}_4 \rightarrow 2\text{H}_3\text{O}^+ + \text{SO}_4^{2-} \][/tex]
Therefore, the concentration of hydronium ions is:
[tex]\[ [\text{H}_3\text{O}^+] = 2 \times 0.01 \text{ M} = 0.02 \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 0.02 \text{ M} \)[/tex].
### Summary:
a. [tex]\( [\text{H}_3\text{O}^+] = 2 \times 10^{-10} \text{ M} \)[/tex]
c. [tex]\( [\text{H}_3\text{O}^+] = 1 \times 10^{-13} \text{ M} \)[/tex]
b. [tex]\( [\text{H}_3\text{O}^+] = 1 \times 10^{-8} \text{ M} \)[/tex]
d. [tex]\( [\text{H}_3\text{O}^+] = 0.02 \text{ M} \)[/tex]
### Part a: Given [tex]\([ \text{OH}^- ] = 5 \times 10^{-5} \text{ M}\)[/tex]
We use the ion-product constant for water at 25 degrees Celsius:
[tex]\[ K_w = [\text{H}_3\text{O}^+][\text{OH}^-] = 1 \times 10^{-14} \][/tex]
We can find the concentration of [tex]\(\text{H}_3\text{O}^+\)[/tex] using the given [tex]\([ \text{OH}^- ]\)[/tex]:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{K_w}{[ \text{OH}^- ]} \][/tex]
Substitute the values:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{1 \times 10^{-14}}{5 \times 10^{-5}} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 2 \times 10^{-10} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 2 \times 10^{-10} \text{ M} \)[/tex].
### Part c: Given [tex]\(0.05 \text{ M Sr(OH)}_2\)[/tex]
Strontium hydroxide, [tex]\( \text{Sr(OH)}_2 \)[/tex], dissociates completely in water and provides 2 hydroxide ions ([tex]\( \text{OH}^- \)[/tex]) per formula unit:
[tex]\[ \text{Sr(OH)}_2 \rightarrow \text{Sr}^{2+} + 2\text{OH}^- \][/tex]
Therefore, the concentration of hydroxide ions is:
[tex]\[ [ \text{OH}^- ] = 2 \times 0.05 \text{ M} = 0.10 \text{ M} \][/tex]
Now, we use the ion-product constant for water:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{K_w}{[ \text{OH}^- ]} \][/tex]
Substitute the values:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{1 \times 10^{-14}}{0.10} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 1 \times 10^{-13} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 1 \times 10^{-13} \text{ M} \)[/tex].
### Part b: Given [tex]\([ \text{OH}^- ] = 100 [ \text{H}_3\text{O}^+ ]\)[/tex]
This gives us a relationship between [tex]\([ \text{OH}^- ]\)[/tex] and [tex]\([ \text{H}_3\text{O}^+ ]\)[/tex]:
[tex]\[ [ \text{OH}^- ] = 100 [ \text{H}_3\text{O}^+ ] \][/tex]
We use the ion-product constant for water:
[tex]\[ K_w = [\text{H}_3\text{O}^+][\text{OH}^-] \][/tex]
Using the given relationship:
[tex]\[ K_w = [\text{H}_3\text{O}^+] \cdot 100 [ \text{H}_3\text{O}^+ ] \][/tex]
[tex]\[ K_w = 100 [\text{H}_3\text{O}^+]^2 \][/tex]
Solving for [tex]\([ \text{H}_3\text{O}^+] \)[/tex]:
[tex]\[ [\text{H}_3\text{O}^+]^2 = \frac{K_w}{100} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = \sqrt{\frac{1 \times 10^{-14}}{100}} = \sqrt{1 \times 10^{-16}} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 1 \times 10^{-8} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 1 \times 10^{-8} \text{ M} \)[/tex].
### Part d: Given [tex]\(0.01 \text{ M H}_2\text{SO}_4\)[/tex]
Sulfuric acid, [tex]\( \text{H}_2\text{SO}_4 \)[/tex], is a strong acid that dissociates completely in water and provides 2 hydronium ions ([tex]\( \text{H}_3\text{O}^+ \)[/tex]) per formula unit:
[tex]\[ \text{H}_2\text{SO}_4 \rightarrow 2\text{H}_3\text{O}^+ + \text{SO}_4^{2-} \][/tex]
Therefore, the concentration of hydronium ions is:
[tex]\[ [\text{H}_3\text{O}^+] = 2 \times 0.01 \text{ M} = 0.02 \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 0.02 \text{ M} \)[/tex].
### Summary:
a. [tex]\( [\text{H}_3\text{O}^+] = 2 \times 10^{-10} \text{ M} \)[/tex]
c. [tex]\( [\text{H}_3\text{O}^+] = 1 \times 10^{-13} \text{ M} \)[/tex]
b. [tex]\( [\text{H}_3\text{O}^+] = 1 \times 10^{-8} \text{ M} \)[/tex]
d. [tex]\( [\text{H}_3\text{O}^+] = 0.02 \text{ M} \)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.