Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's go through each part of the question step-by-step to find the concentration of hydronium ions, [tex]\( \text{H}_3\text{O}^+ \)[/tex], in different scenarios.
### Part a: Given [tex]\([ \text{OH}^- ] = 5 \times 10^{-5} \text{ M}\)[/tex]
We use the ion-product constant for water at 25 degrees Celsius:
[tex]\[ K_w = [\text{H}_3\text{O}^+][\text{OH}^-] = 1 \times 10^{-14} \][/tex]
We can find the concentration of [tex]\(\text{H}_3\text{O}^+\)[/tex] using the given [tex]\([ \text{OH}^- ]\)[/tex]:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{K_w}{[ \text{OH}^- ]} \][/tex]
Substitute the values:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{1 \times 10^{-14}}{5 \times 10^{-5}} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 2 \times 10^{-10} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 2 \times 10^{-10} \text{ M} \)[/tex].
### Part c: Given [tex]\(0.05 \text{ M Sr(OH)}_2\)[/tex]
Strontium hydroxide, [tex]\( \text{Sr(OH)}_2 \)[/tex], dissociates completely in water and provides 2 hydroxide ions ([tex]\( \text{OH}^- \)[/tex]) per formula unit:
[tex]\[ \text{Sr(OH)}_2 \rightarrow \text{Sr}^{2+} + 2\text{OH}^- \][/tex]
Therefore, the concentration of hydroxide ions is:
[tex]\[ [ \text{OH}^- ] = 2 \times 0.05 \text{ M} = 0.10 \text{ M} \][/tex]
Now, we use the ion-product constant for water:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{K_w}{[ \text{OH}^- ]} \][/tex]
Substitute the values:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{1 \times 10^{-14}}{0.10} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 1 \times 10^{-13} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 1 \times 10^{-13} \text{ M} \)[/tex].
### Part b: Given [tex]\([ \text{OH}^- ] = 100 [ \text{H}_3\text{O}^+ ]\)[/tex]
This gives us a relationship between [tex]\([ \text{OH}^- ]\)[/tex] and [tex]\([ \text{H}_3\text{O}^+ ]\)[/tex]:
[tex]\[ [ \text{OH}^- ] = 100 [ \text{H}_3\text{O}^+ ] \][/tex]
We use the ion-product constant for water:
[tex]\[ K_w = [\text{H}_3\text{O}^+][\text{OH}^-] \][/tex]
Using the given relationship:
[tex]\[ K_w = [\text{H}_3\text{O}^+] \cdot 100 [ \text{H}_3\text{O}^+ ] \][/tex]
[tex]\[ K_w = 100 [\text{H}_3\text{O}^+]^2 \][/tex]
Solving for [tex]\([ \text{H}_3\text{O}^+] \)[/tex]:
[tex]\[ [\text{H}_3\text{O}^+]^2 = \frac{K_w}{100} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = \sqrt{\frac{1 \times 10^{-14}}{100}} = \sqrt{1 \times 10^{-16}} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 1 \times 10^{-8} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 1 \times 10^{-8} \text{ M} \)[/tex].
### Part d: Given [tex]\(0.01 \text{ M H}_2\text{SO}_4\)[/tex]
Sulfuric acid, [tex]\( \text{H}_2\text{SO}_4 \)[/tex], is a strong acid that dissociates completely in water and provides 2 hydronium ions ([tex]\( \text{H}_3\text{O}^+ \)[/tex]) per formula unit:
[tex]\[ \text{H}_2\text{SO}_4 \rightarrow 2\text{H}_3\text{O}^+ + \text{SO}_4^{2-} \][/tex]
Therefore, the concentration of hydronium ions is:
[tex]\[ [\text{H}_3\text{O}^+] = 2 \times 0.01 \text{ M} = 0.02 \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 0.02 \text{ M} \)[/tex].
### Summary:
a. [tex]\( [\text{H}_3\text{O}^+] = 2 \times 10^{-10} \text{ M} \)[/tex]
c. [tex]\( [\text{H}_3\text{O}^+] = 1 \times 10^{-13} \text{ M} \)[/tex]
b. [tex]\( [\text{H}_3\text{O}^+] = 1 \times 10^{-8} \text{ M} \)[/tex]
d. [tex]\( [\text{H}_3\text{O}^+] = 0.02 \text{ M} \)[/tex]
### Part a: Given [tex]\([ \text{OH}^- ] = 5 \times 10^{-5} \text{ M}\)[/tex]
We use the ion-product constant for water at 25 degrees Celsius:
[tex]\[ K_w = [\text{H}_3\text{O}^+][\text{OH}^-] = 1 \times 10^{-14} \][/tex]
We can find the concentration of [tex]\(\text{H}_3\text{O}^+\)[/tex] using the given [tex]\([ \text{OH}^- ]\)[/tex]:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{K_w}{[ \text{OH}^- ]} \][/tex]
Substitute the values:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{1 \times 10^{-14}}{5 \times 10^{-5}} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 2 \times 10^{-10} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 2 \times 10^{-10} \text{ M} \)[/tex].
### Part c: Given [tex]\(0.05 \text{ M Sr(OH)}_2\)[/tex]
Strontium hydroxide, [tex]\( \text{Sr(OH)}_2 \)[/tex], dissociates completely in water and provides 2 hydroxide ions ([tex]\( \text{OH}^- \)[/tex]) per formula unit:
[tex]\[ \text{Sr(OH)}_2 \rightarrow \text{Sr}^{2+} + 2\text{OH}^- \][/tex]
Therefore, the concentration of hydroxide ions is:
[tex]\[ [ \text{OH}^- ] = 2 \times 0.05 \text{ M} = 0.10 \text{ M} \][/tex]
Now, we use the ion-product constant for water:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{K_w}{[ \text{OH}^- ]} \][/tex]
Substitute the values:
[tex]\[ [\text{H}_3\text{O}^+] = \frac{1 \times 10^{-14}}{0.10} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 1 \times 10^{-13} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 1 \times 10^{-13} \text{ M} \)[/tex].
### Part b: Given [tex]\([ \text{OH}^- ] = 100 [ \text{H}_3\text{O}^+ ]\)[/tex]
This gives us a relationship between [tex]\([ \text{OH}^- ]\)[/tex] and [tex]\([ \text{H}_3\text{O}^+ ]\)[/tex]:
[tex]\[ [ \text{OH}^- ] = 100 [ \text{H}_3\text{O}^+ ] \][/tex]
We use the ion-product constant for water:
[tex]\[ K_w = [\text{H}_3\text{O}^+][\text{OH}^-] \][/tex]
Using the given relationship:
[tex]\[ K_w = [\text{H}_3\text{O}^+] \cdot 100 [ \text{H}_3\text{O}^+ ] \][/tex]
[tex]\[ K_w = 100 [\text{H}_3\text{O}^+]^2 \][/tex]
Solving for [tex]\([ \text{H}_3\text{O}^+] \)[/tex]:
[tex]\[ [\text{H}_3\text{O}^+]^2 = \frac{K_w}{100} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = \sqrt{\frac{1 \times 10^{-14}}{100}} = \sqrt{1 \times 10^{-16}} \][/tex]
[tex]\[ [\text{H}_3\text{O}^+] = 1 \times 10^{-8} \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 1 \times 10^{-8} \text{ M} \)[/tex].
### Part d: Given [tex]\(0.01 \text{ M H}_2\text{SO}_4\)[/tex]
Sulfuric acid, [tex]\( \text{H}_2\text{SO}_4 \)[/tex], is a strong acid that dissociates completely in water and provides 2 hydronium ions ([tex]\( \text{H}_3\text{O}^+ \)[/tex]) per formula unit:
[tex]\[ \text{H}_2\text{SO}_4 \rightarrow 2\text{H}_3\text{O}^+ + \text{SO}_4^{2-} \][/tex]
Therefore, the concentration of hydronium ions is:
[tex]\[ [\text{H}_3\text{O}^+] = 2 \times 0.01 \text{ M} = 0.02 \text{ M} \][/tex]
So, the concentration of hydronium ions is [tex]\( 0.02 \text{ M} \)[/tex].
### Summary:
a. [tex]\( [\text{H}_3\text{O}^+] = 2 \times 10^{-10} \text{ M} \)[/tex]
c. [tex]\( [\text{H}_3\text{O}^+] = 1 \times 10^{-13} \text{ M} \)[/tex]
b. [tex]\( [\text{H}_3\text{O}^+] = 1 \times 10^{-8} \text{ M} \)[/tex]
d. [tex]\( [\text{H}_3\text{O}^+] = 0.02 \text{ M} \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.