At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which expression is equivalent to the given complex fraction:
[tex]\[ \frac{\frac{-2}{x} + \frac{5}{y}}{\frac{3}{y} - \frac{2}{x}} \][/tex]
we need to simplify this complex fraction step-by-step.
1. Combine the numerators and denominators:
- For the numerator:
[tex]\[ \frac{-2}{x} + \frac{5}{y} \][/tex]
To combine these fractions, find a common denominator (which is [tex]\(xy\)[/tex]):
[tex]\[ \frac{-2y}{xy} + \frac{5x}{xy} = \frac{-2y + 5x}{xy} \][/tex]
- For the denominator:
[tex]\[ \frac{3}{y} - \frac{2}{x} \][/tex]
Again, find a common denominator (which is [tex]\(xy\)[/tex]):
[tex]\[ \frac{3x}{xy} - \frac{2y}{xy} = \frac{3x - 2y}{xy} \][/tex]
2. Write the complex fraction using the combined numerators and denominators:
[tex]\[ \frac{\frac{-2y + 5x}{xy}}{\frac{3x - 2y}{xy}} \][/tex]
3. Divide the numerators and denominators:
When dividing fractions, multiply by the reciprocal of the divisor:
[tex]\[ \frac{-2y + 5x}{xy} \div \frac{3x - 2y}{xy} = \frac{-2y + 5x}{xy} \cdot \frac{xy}{3x - 2y} = \frac{(-2y + 5x) \cdot xy}{xy \cdot (3x - 2y)} \][/tex]
4. Simplify the expression:
The [tex]\(xy\)[/tex] terms cancel out in the numerator and denominator:
[tex]\[ \frac{-2y + 5x}{3x - 2y} \][/tex]
Therefore, the simplified expression equivalent to the given complex fraction is:
[tex]\[ \frac{-2 y + 5 x}{3 x - 2 y} \][/tex]
Comparing this with the given choices, the equivalent expression is:
[tex]\[ \boxed{\frac{-2 y + 5 x}{3 x - 2 y}} \][/tex]
[tex]\[ \frac{\frac{-2}{x} + \frac{5}{y}}{\frac{3}{y} - \frac{2}{x}} \][/tex]
we need to simplify this complex fraction step-by-step.
1. Combine the numerators and denominators:
- For the numerator:
[tex]\[ \frac{-2}{x} + \frac{5}{y} \][/tex]
To combine these fractions, find a common denominator (which is [tex]\(xy\)[/tex]):
[tex]\[ \frac{-2y}{xy} + \frac{5x}{xy} = \frac{-2y + 5x}{xy} \][/tex]
- For the denominator:
[tex]\[ \frac{3}{y} - \frac{2}{x} \][/tex]
Again, find a common denominator (which is [tex]\(xy\)[/tex]):
[tex]\[ \frac{3x}{xy} - \frac{2y}{xy} = \frac{3x - 2y}{xy} \][/tex]
2. Write the complex fraction using the combined numerators and denominators:
[tex]\[ \frac{\frac{-2y + 5x}{xy}}{\frac{3x - 2y}{xy}} \][/tex]
3. Divide the numerators and denominators:
When dividing fractions, multiply by the reciprocal of the divisor:
[tex]\[ \frac{-2y + 5x}{xy} \div \frac{3x - 2y}{xy} = \frac{-2y + 5x}{xy} \cdot \frac{xy}{3x - 2y} = \frac{(-2y + 5x) \cdot xy}{xy \cdot (3x - 2y)} \][/tex]
4. Simplify the expression:
The [tex]\(xy\)[/tex] terms cancel out in the numerator and denominator:
[tex]\[ \frac{-2y + 5x}{3x - 2y} \][/tex]
Therefore, the simplified expression equivalent to the given complex fraction is:
[tex]\[ \frac{-2 y + 5 x}{3 x - 2 y} \][/tex]
Comparing this with the given choices, the equivalent expression is:
[tex]\[ \boxed{\frac{-2 y + 5 x}{3 x - 2 y}} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.