Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the temperature [tex]\( T_{eq} \)[/tex] at which the forward and reverse corrosion reactions occur in equilibrium, we need to use the Gibbs free energy equation at equilibrium. The Gibbs free energy [tex]\( G \)[/tex] is given by:
[tex]\[ G = H - T S \][/tex]
At equilibrium, the Gibbs free energy change [tex]\( \Delta G \)[/tex] for the reaction is zero:
[tex]\[ \Delta G = \Delta H - T_{eq} \Delta S = 0 \][/tex]
We can rearrange this equation to solve for the equilibrium temperature [tex]\( T_{eq} \)[/tex]:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
Let's use the given values for the enthalpy change [tex]\( \Delta H \)[/tex] and entropy change [tex]\( \Delta S \)[/tex] to find [tex]\( T_{eq} \)[/tex]. We need to ensure the units are consistent, so we first convert the enthalpy change from kJ to J (since [tex]\( 1 \, \text{kJ} = 1000 \, \text{J} \)[/tex]):
[tex]\[ \Delta H = -3352 \, \text{kJ} = -3352 \times 1000 \, \text{J} \][/tex]
[tex]\[ \Delta H = -3352000 \, \text{J} \][/tex]
Now, we can substitute the values into the equation:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
[tex]\[ T_{eq} = \frac{-3352000 \, \text{J}}{-625.1 \, \text{J/K}} \][/tex]
Evaluating this expression gives the equilibrium temperature:
[tex]\[ T_{eq} = 5362.342025275956 \, \text{K} \][/tex]
Therefore, the temperature [tex]\( T_{eq} \)[/tex] at which the forward and reverse corrosion reactions occur in equilibrium is approximately:
[tex]\[ \begin{array}{|c|c|} \hline 5362 & \text{K} \\ \hline \end{array} \][/tex]
This can be expressed as:
[tex]\[ \boxed{5362 \, \text{K}} \][/tex]
[tex]\[ G = H - T S \][/tex]
At equilibrium, the Gibbs free energy change [tex]\( \Delta G \)[/tex] for the reaction is zero:
[tex]\[ \Delta G = \Delta H - T_{eq} \Delta S = 0 \][/tex]
We can rearrange this equation to solve for the equilibrium temperature [tex]\( T_{eq} \)[/tex]:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
Let's use the given values for the enthalpy change [tex]\( \Delta H \)[/tex] and entropy change [tex]\( \Delta S \)[/tex] to find [tex]\( T_{eq} \)[/tex]. We need to ensure the units are consistent, so we first convert the enthalpy change from kJ to J (since [tex]\( 1 \, \text{kJ} = 1000 \, \text{J} \)[/tex]):
[tex]\[ \Delta H = -3352 \, \text{kJ} = -3352 \times 1000 \, \text{J} \][/tex]
[tex]\[ \Delta H = -3352000 \, \text{J} \][/tex]
Now, we can substitute the values into the equation:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
[tex]\[ T_{eq} = \frac{-3352000 \, \text{J}}{-625.1 \, \text{J/K}} \][/tex]
Evaluating this expression gives the equilibrium temperature:
[tex]\[ T_{eq} = 5362.342025275956 \, \text{K} \][/tex]
Therefore, the temperature [tex]\( T_{eq} \)[/tex] at which the forward and reverse corrosion reactions occur in equilibrium is approximately:
[tex]\[ \begin{array}{|c|c|} \hline 5362 & \text{K} \\ \hline \end{array} \][/tex]
This can be expressed as:
[tex]\[ \boxed{5362 \, \text{K}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.