Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the temperature [tex]\( T_{eq} \)[/tex] at which the forward and reverse corrosion reactions occur in equilibrium, we need to use the Gibbs free energy equation at equilibrium. The Gibbs free energy [tex]\( G \)[/tex] is given by:
[tex]\[ G = H - T S \][/tex]
At equilibrium, the Gibbs free energy change [tex]\( \Delta G \)[/tex] for the reaction is zero:
[tex]\[ \Delta G = \Delta H - T_{eq} \Delta S = 0 \][/tex]
We can rearrange this equation to solve for the equilibrium temperature [tex]\( T_{eq} \)[/tex]:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
Let's use the given values for the enthalpy change [tex]\( \Delta H \)[/tex] and entropy change [tex]\( \Delta S \)[/tex] to find [tex]\( T_{eq} \)[/tex]. We need to ensure the units are consistent, so we first convert the enthalpy change from kJ to J (since [tex]\( 1 \, \text{kJ} = 1000 \, \text{J} \)[/tex]):
[tex]\[ \Delta H = -3352 \, \text{kJ} = -3352 \times 1000 \, \text{J} \][/tex]
[tex]\[ \Delta H = -3352000 \, \text{J} \][/tex]
Now, we can substitute the values into the equation:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
[tex]\[ T_{eq} = \frac{-3352000 \, \text{J}}{-625.1 \, \text{J/K}} \][/tex]
Evaluating this expression gives the equilibrium temperature:
[tex]\[ T_{eq} = 5362.342025275956 \, \text{K} \][/tex]
Therefore, the temperature [tex]\( T_{eq} \)[/tex] at which the forward and reverse corrosion reactions occur in equilibrium is approximately:
[tex]\[ \begin{array}{|c|c|} \hline 5362 & \text{K} \\ \hline \end{array} \][/tex]
This can be expressed as:
[tex]\[ \boxed{5362 \, \text{K}} \][/tex]
[tex]\[ G = H - T S \][/tex]
At equilibrium, the Gibbs free energy change [tex]\( \Delta G \)[/tex] for the reaction is zero:
[tex]\[ \Delta G = \Delta H - T_{eq} \Delta S = 0 \][/tex]
We can rearrange this equation to solve for the equilibrium temperature [tex]\( T_{eq} \)[/tex]:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
Let's use the given values for the enthalpy change [tex]\( \Delta H \)[/tex] and entropy change [tex]\( \Delta S \)[/tex] to find [tex]\( T_{eq} \)[/tex]. We need to ensure the units are consistent, so we first convert the enthalpy change from kJ to J (since [tex]\( 1 \, \text{kJ} = 1000 \, \text{J} \)[/tex]):
[tex]\[ \Delta H = -3352 \, \text{kJ} = -3352 \times 1000 \, \text{J} \][/tex]
[tex]\[ \Delta H = -3352000 \, \text{J} \][/tex]
Now, we can substitute the values into the equation:
[tex]\[ T_{eq} = \frac{\Delta H}{\Delta S} \][/tex]
[tex]\[ T_{eq} = \frac{-3352000 \, \text{J}}{-625.1 \, \text{J/K}} \][/tex]
Evaluating this expression gives the equilibrium temperature:
[tex]\[ T_{eq} = 5362.342025275956 \, \text{K} \][/tex]
Therefore, the temperature [tex]\( T_{eq} \)[/tex] at which the forward and reverse corrosion reactions occur in equilibrium is approximately:
[tex]\[ \begin{array}{|c|c|} \hline 5362 & \text{K} \\ \hline \end{array} \][/tex]
This can be expressed as:
[tex]\[ \boxed{5362 \, \text{K}} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.