Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Using the information from the previous steps, what is this number in proper scientific notation?

[tex]\[
\left(0.031 \times 10^2\right) \times \frac{10^5}{10^2} = [?] \times 10^{[?]}
\][/tex]

Enter the coefficient in the green box and the exponent in the yellow box.

Coefficient: [tex]\(\square\)[/tex]

Exponent: [tex]\(\square\)[/tex]

Sagot :

Certainly! Let's begin by breaking down the problem step by step:

1. Start with the initial expression:
[tex]\[ \left(0.031 \times 10^2\right) \times \frac{10^5}{10^2} \][/tex]

2. First, simplify the coefficient part:
[tex]\[ 0.031 \times 10^2 \][/tex]
Perform the multiplication:
[tex]\[ 0.031 \times 100 = 3.1 \][/tex]

3. Now simplify the fraction:
[tex]\[ \frac{10^5}{10^2} \][/tex]
To divide powers of ten, subtract the exponents:
[tex]\[ 10^{5-2} = 10^3 \][/tex]

4. Combine the results from the above steps:
[tex]\[ 3.1 \times 10^3 \][/tex]

Thus, the number expressed in proper scientific notation is:
[tex]\[ 3.1 \times 10^3 \][/tex]

Now, enter the coefficient and the exponent in the corresponding boxes:

Coefficient: [tex]\(\boxed{3.1}\)[/tex] \\
Exponent: [tex]\(\boxed{3}\)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.