Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To construct a truth table for the compound statement [tex]\(\sim p \wedge q\)[/tex], we need to examine all possible truth values for [tex]\(p\)[/tex] and [tex]\(q\)[/tex] and determine the truth value of [tex]\(\sim p \wedge q\)[/tex] in each case.
Let's examine each row of the truth table step by step:
1. Row 1:
- [tex]\(p = T\)[/tex]
- [tex]\(q = T\)[/tex]
- [tex]\(\sim p = F\)[/tex] (since [tex]\(p\)[/tex] is True, not [tex]\(p\)[/tex] is False)
- [tex]\(\sim p \wedge q = F \wedge T = F\)[/tex] (since the conjunction of False and True is False)
2. Row 2:
- [tex]\(p = T\)[/tex]
- [tex]\(q = F\)[/tex]
- [tex]\(\sim p = F\)[/tex] (since [tex]\(p\)[/tex] is True, not [tex]\(p\)[/tex] is False)
- [tex]\(\sim p \wedge q = F \wedge F = F\)[/tex] (since the conjunction of False and False is False)
3. Row 3:
- [tex]\(p = F\)[/tex]
- [tex]\(q = T\)[/tex]
- [tex]\(\sim p = T\)[/tex] (since [tex]\(p\)[/tex] is False, not [tex]\(p\)[/tex] is True)
- [tex]\(\sim p \wedge q = T \wedge T = T\)[/tex] (since the conjunction of True and True is True)
4. Row 4:
- [tex]\(p = F\)[/tex]
- [tex]\(q = F\)[/tex]
- [tex]\(\sim p = T\)[/tex] (since [tex]\(p\)[/tex] is False, not [tex]\(p\)[/tex] is True)
- [tex]\(\sim p \wedge q = T \wedge F = F\)[/tex] (since the conjunction of True and False is False)
Now, let's enter these values into the truth table:
[tex]\[ \begin{tabular}{|c|c|c|} \hline $p$ & $q$ & $\sim p \wedge q$ \\ \hline T & T & F \\ \hline T & F & F \\ \hline F & T & T \\ \hline F & F & F \\ \hline \end{tabular} \][/tex]
This completes the truth table for the compound statement [tex]\(\sim p \wedge q\)[/tex].
Let's examine each row of the truth table step by step:
1. Row 1:
- [tex]\(p = T\)[/tex]
- [tex]\(q = T\)[/tex]
- [tex]\(\sim p = F\)[/tex] (since [tex]\(p\)[/tex] is True, not [tex]\(p\)[/tex] is False)
- [tex]\(\sim p \wedge q = F \wedge T = F\)[/tex] (since the conjunction of False and True is False)
2. Row 2:
- [tex]\(p = T\)[/tex]
- [tex]\(q = F\)[/tex]
- [tex]\(\sim p = F\)[/tex] (since [tex]\(p\)[/tex] is True, not [tex]\(p\)[/tex] is False)
- [tex]\(\sim p \wedge q = F \wedge F = F\)[/tex] (since the conjunction of False and False is False)
3. Row 3:
- [tex]\(p = F\)[/tex]
- [tex]\(q = T\)[/tex]
- [tex]\(\sim p = T\)[/tex] (since [tex]\(p\)[/tex] is False, not [tex]\(p\)[/tex] is True)
- [tex]\(\sim p \wedge q = T \wedge T = T\)[/tex] (since the conjunction of True and True is True)
4. Row 4:
- [tex]\(p = F\)[/tex]
- [tex]\(q = F\)[/tex]
- [tex]\(\sim p = T\)[/tex] (since [tex]\(p\)[/tex] is False, not [tex]\(p\)[/tex] is True)
- [tex]\(\sim p \wedge q = T \wedge F = F\)[/tex] (since the conjunction of True and False is False)
Now, let's enter these values into the truth table:
[tex]\[ \begin{tabular}{|c|c|c|} \hline $p$ & $q$ & $\sim p \wedge q$ \\ \hline T & T & F \\ \hline T & F & F \\ \hline F & T & T \\ \hline F & F & F \\ \hline \end{tabular} \][/tex]
This completes the truth table for the compound statement [tex]\(\sim p \wedge q\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.