Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the quotient in polynomial form, let's perform synthetic division step by step. The given polynomial to be divided is [tex]\( 1x^2 + 6x - 16 \)[/tex] by [tex]\( x - 2 \)[/tex]. The root of the divisor polynomial [tex]\( x - 2 \)[/tex] is [tex]\( 2 \)[/tex].
### Steps to Perform Synthetic Division:
1. Setup the Synthetic Division:
- Write down the coefficients of the polynomial: [tex]\( [1, 6, -16] \)[/tex].
- Write the root of the divisor to the left: [tex]\( 2 \)[/tex].
```
2 | 1 6 -16
----------------
```
2. Start the Synthetic Division Process:
- Bring down the leading coefficient (1) to the bottom row.
```
2 | 1 6 -16
----------------
1
```
3. Multiply and Add:
- Multiply the root (2) by the value just written below the line (1), then add this result to the next coefficient (6).
[tex]\[ 2 \times 1 = 2 \][/tex]
[tex]\[ 6 + 2 = 8 \][/tex]
- Write the result below the line under the second coefficient.
```
2 | 1 6 -16
----------------
1 8
```
4. Repeat the Multiply and Add Step:
- Multiply the root (2) by the new value (8), then add this to the next coefficient (-16).
[tex]\[ 2 \times 8 = 16 \][/tex]
[tex]\[ -16 + 16 = 0 \][/tex]
- Write the result below the line under the last coefficient.
```
2 | 1 6 -16
----------------
1 8 0
```
5. Determine the Quotient and the Remainder:
- The bottom row (excluding the last value) represents the coefficients of the quotient polynomial. Here, the last value (0) is the remainder.
- So, the quotient polynomial has coefficients: [tex]\( [1, 8] \)[/tex], corresponding to [tex]\( x + 8 \)[/tex].
### Conclusion:
Thus, the quotient in polynomial form is [tex]\( x + 8 \)[/tex].
From the options given:
A. [tex]\( x - 6 \)[/tex]
B. [tex]\( x - 8 \)[/tex]
C. [tex]\( x + 8 \)[/tex]
D. [tex]\( x + 6 \)[/tex]
The correct answer is:
C. [tex]\( x + 8 \)[/tex]
### Steps to Perform Synthetic Division:
1. Setup the Synthetic Division:
- Write down the coefficients of the polynomial: [tex]\( [1, 6, -16] \)[/tex].
- Write the root of the divisor to the left: [tex]\( 2 \)[/tex].
```
2 | 1 6 -16
----------------
```
2. Start the Synthetic Division Process:
- Bring down the leading coefficient (1) to the bottom row.
```
2 | 1 6 -16
----------------
1
```
3. Multiply and Add:
- Multiply the root (2) by the value just written below the line (1), then add this result to the next coefficient (6).
[tex]\[ 2 \times 1 = 2 \][/tex]
[tex]\[ 6 + 2 = 8 \][/tex]
- Write the result below the line under the second coefficient.
```
2 | 1 6 -16
----------------
1 8
```
4. Repeat the Multiply and Add Step:
- Multiply the root (2) by the new value (8), then add this to the next coefficient (-16).
[tex]\[ 2 \times 8 = 16 \][/tex]
[tex]\[ -16 + 16 = 0 \][/tex]
- Write the result below the line under the last coefficient.
```
2 | 1 6 -16
----------------
1 8 0
```
5. Determine the Quotient and the Remainder:
- The bottom row (excluding the last value) represents the coefficients of the quotient polynomial. Here, the last value (0) is the remainder.
- So, the quotient polynomial has coefficients: [tex]\( [1, 8] \)[/tex], corresponding to [tex]\( x + 8 \)[/tex].
### Conclusion:
Thus, the quotient in polynomial form is [tex]\( x + 8 \)[/tex].
From the options given:
A. [tex]\( x - 6 \)[/tex]
B. [tex]\( x - 8 \)[/tex]
C. [tex]\( x + 8 \)[/tex]
D. [tex]\( x + 6 \)[/tex]
The correct answer is:
C. [tex]\( x + 8 \)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.