Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Rewrite the function by completing the square.

[tex]\[
\begin{array}{l}
f(x) = x^2 + 4x + 41 \\
f(x) = (x + \square)^2 + \square
\end{array}
\][/tex]


Sagot :

To rewrite the quadratic function [tex]\( f(x) = x^2 + 4x + 41 \)[/tex] by completing the square, we need to transform it into the form [tex]\( f(x) = (x + a)^2 + b \)[/tex]. Here are the steps:

1. Identify and group the [tex]\( x \)[/tex]-terms:
[tex]\[ f(x) = x^2 + 4x + 41 \][/tex]

2. To complete the square, we first take the coefficient of [tex]\( x \)[/tex] (which is 4) and halve it:
[tex]\[ \frac{4}{2} = 2 \][/tex]

3. Next, we square this value:
[tex]\[ 2^2 = 4 \][/tex]

4. Rewrite the function by adding and subtracting this square value inside the equation, ensuring that the function remains unchanged:
[tex]\[ f(x) = x^2 + 4x + 4 - 4 + 41 \][/tex]

5. Group the perfect square trinomial and calculate the remaining constant term:
[tex]\[ f(x) = (x + 2)^2 - 4 + 41 \][/tex]

6. Simplify the constant term:
[tex]\[ -4 + 41 = 37 \][/tex]

7. So the completed square form of the quadratic function is:
[tex]\[ f(x) = (x + 2)^2 + 37 \][/tex]

Thus, the quadratic function [tex]\( f(x) = x^2 + 4x + 41 \)[/tex] rewritten by completing the square is:
[tex]\[ f(x) = (x + 2)^2 + 37 \][/tex]